
The stress tensor

This is very much not examinable Part IB material. The concept of the stress tensor is properly
introduced in Part II Fluids but a lot of you have been asking about forces, pressure and tangential
stresses, and I think this is definitely the best way to look at them physically. Always answer questions
with the Part IB approach – the purpose of this PDF is just to give you a little insight into some more
foundational fluid mechanics.

Start by considering the velocity field in the neighbourhood of some fixed point x0. Everything we’ll be doing here is
linear, so take a first order Taylor series approximation to describe the flow locally,

u (x) = u (x0) + (x− x0) · ∇u|x=x0
+ . . . . (1)

We decompose the velocity gradient ∇u into symmetric and antisymmetric parts and write
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where e is the rate-of-strain tensor and Ω is the vorticity tensor. As an aside, the vorticity satisfies

(ω × x)i = 2Ωijxj , (3)

so we can return to equation (1) and write

u (x) = u (x0) + e · (x− x0) +
1

2
ω × (x− x0) + . . . . (4)

In effect, what we’ve done here is decompose any flow into a straining part and a rotation. Importantly, note that
incompressibility coupled with the definition of the rate-of-strain tensor means that tr e = 0, which is a useful fact for
later.

Introducing the stress tensor

In continuum mechanics there are two types of forces – body forces like gravity which act per unit volume (denoted f)
and surface stresses τ which act on surfaces and are stated ‘per unit area’. Denote by τ (n) the surface stress acting
on a surface with outward (or inward, the choice is yours so long as you stay consistent) normal n. An argument that
you’ll detail in the first couple of lectures of Part II Fluids1 shows that we expect this normal stress to be related
linearly to the normal vector. That means, in terms of tensors and index notation,

τi = σijnj (5)

for some second-rank tensor σij . The components of σ can therefore be found by considering the components of the
normal stress if we set n to be the basis vectors ej – i.e. σij = τi (ej) (think about this for a couple of minutes and
you should be able to convince yourself). We expect this stress tensor to have two parts:

• An isotropic part which acts normal to surfaces and has a magnitude independent of direction. If that sounds
familiar to you, it’s because that’s exactly how pressure works. This part of the stress tensor, therefore, we
expect to be the pressure of the fluid.

• A deviatoric part which acts both normally and tangentially and is due to relative motion and viscosity.

So we write σij = −pδij + σdev
ij , and need σdev

ij to have zero trace (or else some of its values could be absorbed into

the pressure term)2. This is where we make a few assumptions, starting with the fact that σdev
ij needs to be a function

of ∇u, since we saw above that relative motion in the vicinity of a fluid particle can be described just by the velocity
gradient (up to first order). The other two assumptions we make define a Newtonian fluid:

• The deviatoric stress is linear and related to the instantaneous value of∇u and thus has no historical dependence.
Examples where this doesn’t hold are things like toothpaste or mayonnaise, both very much nonlinear. This
means we can write σdev

ij = Aijkl∂uk/∂xl for some fourth-rank tensor A.

1if you want a “proof” of this, take a look at page 4 of http://paul.metcalfe.googlepages.com/fluids-2b.pdf.
2the reason for the minus sign in the pressure term can be seen by considering a unit cube in the fluid - the fluid exerts a pressure on

the cube in the opposite direction to the normal pointing at the fluid, necessitating the sign change.
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• The fluid is isotropic, so A must be isotropic, taking the most general form for an isotropic fourth-rank tensor
Aijkl = µ′δijδkl + µ′′δikδjl + µ′′′δilδjk.

All of these assumptions mean

σdev
ij = µ′ ∂ul
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δij + µ′′ ∂ui
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. (6)

The first term here has to be zero, by incompressibility, so we are left with only the second two. We also know that
the overall stress tensor σ has to be symmetric3, and −pδij is symmetric, so σdev

ij needs to be symmetric as well. This
means that µ′′ = µ′′′ = µ and

σij = −pδij + 2µ

[
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]
= −pδij + 2µeij . (7)

This is the stress tensor for a Newtonian fluid. As it turns out, many common fluids are Newtonian to a pretty good
approximation, so this is the only stress tensor you’ll work with in fluids until at least Part III. Note that the stress
tensor depends on e but not on Ω: the reason for this is that rigid body motions, like the rotation described by that
tensor, don’t produce stress in the fluid, but straining motion does, as viscous fluid molecules glide past one another.

What does this mean for boundary conditions?

You’ve already seen that at an interface or solid boundary, u · n has to be continuous by mass conservation. In the
case of a rigid wall, it has to be zero, for example. In order for the velocity gradient to not become singular at the
interface, we also need the tangential component (i.e. u − (u · n)n) to be continuous. Both of these together imply
that u is continuous across an interface. Again, you’ve implicitly seen this already, too – in the form of the ‘no-slip’
boundary condition for viscous fluids that requires u = 0 on a rigid boundary.

So the net stress on a boundary is σ · n. Let’s think about a 2D case where there’s a boundary at y = 0 with a fluid
that has pressure p flowing in y > 0, with velocity u = u (y) x̂. This describes pretty much all the situations you deal
with in Part IB. The strain rate tensor for this flow comes out as

e =
1

2

 0 ∂u/∂y 0
∂u/∂y 0 0

0 0 0

 , (8)

so the stress tensor is

σ =

 −p µ∂u/∂y 0
µ∂u/∂y −p 0

0 0 −p

 , (9)

Let’s see what the normal and tangential components of the stress exerted by the fluid on the boundary4 are.

σ · n = −pŷ + µ
∂u

∂y
x̂, (10)

that is to say, we’ve got the fluid pressure p pushing down on the boundary, as we’d expect, and then the viscous stress
acting along the boundary with the familiar expression. Both pressures and viscous stresses are unified here, which is
pretty neat, and pretty much the only way to cope when your normal doesn’t neatly align with the coordinate axes.
But that’s a job for next year...

3see the same PDF for a justification of this, or just take it on trust because it seems like it should be (not recommended exam advice
for Part II).

4n = ŷ!
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