
The Papkovich-Neuber representation

Any body-force-free Stokes flow can be written in the form

2µu = ∇ (x ·Φ + χ)− 2Φ with p = ∇ ·Φ

where χ is a harmonic scalar and Φ is a harmonic vector. This result will have been quoted, but probably not derived,
in lectures – it’s extremely powerful and really useful in lots of different problems, so it’s quite neat to have a bit of
an idea how it comes about.

Start by letting p = ∇2Π for some function Π. Thinking back to IB Methods, this can always be done (except for
probably in some weird pure maths edge cases that we’d never see in physics) by setting
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4π

∫
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Thus we can rewrite the Stokes equations as ∇2 (µu−∇Π) = 0 (plus ∇ · u = 0). This means that

µu = ∇Π−Φ where ∇2Φ = 0.

Further imposing incompressibility, ∇2Π = ∇ ·Φ, and so p = ∇ ·Φ. Then, since Π satisfies this Poisson equation,

Π =
1

2
(x ·Φ + χ) ,

with ∇2χ = 0 (it’s easy to check that this is the general solution). Thus, rearranging and substituting in our form for
Π, we get the desired Papkovich-Neuber representation. There are some easy harmonic trial functions to use when
constructing Φ and χ – if we want the solution to decay as r →∞, try
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Alternatively, if we want the solution to be regular as r → 0, try
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Remember as well that u, F , x are all ‘true’ quantities and Ω, G, ω are all ‘pseudo’. Less rigorously, but helpful as a
memory aid, ∇ is ‘true’ but ∧ (i.e. the cross product) is ‘psuedo’. Thus ∇∧ x is ‘pseudo’ but ∇∧ω is ‘true’ (pseudo
× psuedo = true) – the two types of tensor obey a ‘parity-like’ relationship.

Stokeslet solution

One of the simplest solutions we can derive here is that of the flow due to a point force at the origin in three dimensions.
This is incredibly useful as we can sum these solutions together (see Part III Slow Viscous Flow). We’re not breaking
the rule of ‘body-force-free’ here, since the body force is only supported at the origin (f = F δ (x)). Try χ = 0 and
Φ = αF /r; after a bit of algebra, this gives

2µu = −α
{
F

r
+

(F · x)x

r3

}
⇒ σ =

3α (F · x)

r5
xx.

It then remains to integrate the surface stress over a sphere of radius R centred on the origin and match with force to
determine the constant α. To do this, we must note that

∫
r=R

ninj dS is an isotropic integral, and so must equal Kδij
for some constant K (throwback to Part IA Vector Calc here). Setting i = j, 4πR2 = 3K and so K = 4πR2/3. Thus,∫

r=R

σ · n dS =
3αF

R2
·
∫
r=R

nndS = 4παF .

But ∇ · σ = −F δ (x),
∫
V
F δ (x) dV = F = −

∫
r=R

σ · ndS. Hence α = −1/4π.
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