
Kelvin’s circulation theorem

Question 7 on example sheet 2 throws up a few topics about conservation of angular momentum (vortex
stretching, the ‘ballerina effect’) with a flow that looks a bit like a tornado. There’s a really neat way
of looking at this using Kelvin’s circulation theorem, a starred section of the IB Course that used to
be (back in my day, and definitely back in the day that this question was first set) examinable. Here
I’ll outline the theorem and show how you can apply it to the flow in this question.

The theorem and its ‘proof’

Circulation is defined around a closed contour γ by the integral expression

Γ =

∮
γ

u · dx,

where dx is the (tangent) line element. Provided that the density is constant and body forces are conservative
(F = −∇χ), Kelvin’s circulation theorem states that the material derivative of Γ with respect to time around a
material fluid curve (i.e. a γ that moves with the flow) is zero. This condition can be expressed as

DΓ

Dt
= 0 where

D

Dt
=

∂

∂t
+ u · ∇.

In order to prove this result, note that

DΓ

Dt
=

∮
γ

[
Du

Dt
· dx+ u · D(dx)

Dt

]
,

and the curve γ is deforming with the flow, so D (dx) /Dt is just du. Then, substituting from the Euler equation,

DΓ

Dt
=

∮
γ

[
−∇

(
p

ρ
+ χ

)
· dx+ u · du

]
,

=

∮
γ

[
−∇

(
p

ρ
+ χ

)
· dx+ d

(
1

2
|u|2

)]
,

=

∮
γ

∇
(
1

2
|u|2 − p

ρ
− χ

)
· dx.

This integral must be zero, since it is the integral of the gradient of a single-valued function around a closed curve (no
weird winding numbers/branch cut stuff here!), and so DΓ/Dt = 0 as desired.

Applying this to sheet 2 Q7

The tornado-like flow in question 7 provides a good example to illustrate the use of Kelvin’s circulation theorem, where
we start by writing the flow in cylindrical polar coordinates (ur, uθ, uz) as

u = (−αr, r2f(t), 2αz).

These three components illustrate the radial inwards flow, the rotation around the z axis and the movement along
the axis, respectively, and it is clear that rotation must happen faster as the flow is dragged in towards r = 0 so as to
conserve angular momentum. Compute the circulation around a material curve γ defined to be the circle r = R(t),
which remains a circle for all time, with the radius shrinking,

Γ =

∮
{r=R(t)}

u · dx = R(t)

∫ 2π

0

uθ dθ = 2πR(t)3f(t).

(Notice that this integral could also be computed using Stokes’ theorem and your expression for ω from the start of
the question – why not check that the answers match?) On the material curve r = R(t), this value of Γ is constant, so
it remains to find how R(t) evolves in time to deduce how f(t) therefore must change. Since this is a material curve,

dR

dt
= ur|r=R(t) = −αR(t),

and so R(t) = R0e
−αt for some constant R0. Thus,

2πR3
0e

−3αtf(t) = const.,

and therefore f(t) ∝ e3αt, which can also be seen by considering the contributions to the vorticity equation (the 2α
seen from the example in lectures plus an extra α contribution from rotation).
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