
The dynamic boundary condition for water waves

This is something that a lot of you have asked about, or missed some subtle points, and I realise that
it’s also something I perhaps haven’t explained as clearly as possible in the supervisions. Here I’ll work
through perhaps the most comprehensive problem you could ever be expected to solve in an exam,
incorporating some surface tension too just to make it especially messy (and interesting). You won’t
be expected to recall what effect surface tension has on the boundary conditions – if they were to ask
about it (unlikely, but I’ve seen it in the past), it’ll be given.

Problem: deduce the dispersion relation for water waves (of the form z = η (x, t) = η0Re
[
ei(kx−ωt)

]
) at the interface

z = 0 between two fluid layers of semi-infinite depth, the lower with a density ρ2 and the upper with density ρ1. There
is surface tension at the interface between the waves which has the effect of introducing a jump condition in p across
the interface, p|+− = γ∂2η/∂x2 1.

Start, as always, by introducing velocity potentials for the irrotational flow above and below the interface, namely

u = ∇φ1 in z > η (x, t) and u = ∇φ2 in z < η (x, t). (1)

So we can match later on, these are going to have to have the form φi = φ̃i (z) Re
[
ei(kx−ωt)

]
. Implicitly, drop the ‘real

part’ notation as we will always assume that this is the case. By incompressibility, ∇2φi = 0 and so we must solve

φ̃′′i − k2φ̃i = 0. (2)

This has solutions of the form φ̃i ∝ e±kz, so take

φ̃1 = Φ1e
−kz and φ̃2 = Φ2e

kz, (3)

through requiring decay at ±∞. From hereon in, drop the tildes from the functions for clarity.

The kinematic boundary condition at the interface implies that

Dη

Dt
=
∂φ1
∂z

ei(kx−ωt) =
∂φ2
∂z

ei(kx−ωt) on z = η (x, t), (4)

i.e. the vertical velocities match at the boundary and are equal to the vertical velocity of the boundary itself. If we
assume |η| � 1, we can linearise onto z = 0 and this condition becomes

∂η

∂t
=
∂φ1
∂z

ei(kx−ωt) =
∂φ2
∂z

ei(kx−ωt) on z = 0. (5)

This condition becomes
− iωη0 = −kΦ1 = kΦ2. (6)

The unsteady Bernoulli theorem provides a dynamic boundary condition for this problem. Therefore,

ρi
∂

∂t

[
φi (z) ei(kx−ωt)

]
+
ρi
2
|ui|2 + pi + ρgη (x, t) = fi (t) (7)

which we again linearise around onto z = 0, only keeping terms of first order, so

ρi
∂

∂t

[
φi (z) ei(kx−ωt)

]
+ pi + ρigη0e

i(kx−ωt) = fi (t) . (8)

By requiring no x-dependence in the function on the left-hand side, and expecting the pressure too to have the form
∝ ei(kx−ωt), it is clear that f1 = f2 = 0. It’s really important that you leave the pressures in here – this
is one place where you can’t take them to be wlog zero! The dynamic boundary condition is essentially all to do
with pressures across an interface, so take care – even when the pressure is continuous across the interface, it may be
nonzero, so don’t just get rid of it. Only once we’ve realised that f1 = f2 = 0 can we equate the expressions either
side of the boundary,

− iωρ1Φ1 + P1 + ρ1gη0 = −iωρ2Φ2 + P2 + ρ2gη0, (9)

where pi = Pie
i(kx−ωt). The pressure boundary condition gives

P1 − P2 = −γk2η0. (10)

1Only valid for |ηx| � 1, which (a) is the case here and (b) isn’t something you should be worrying about.
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Substituting in for Φ1 and Φ2 from equation (6) implies that

ω2ρ1η0
k

+ ρ1gη0 +
ω2ρ2η0
k

− ρ2gη0 = P2 − P1

= γk2η0, (11)

and therefore

ω2 =
(ρ2 − ρ1) gk + γk3

ρ1 + ρ2
. (12)

Let’s just sanity-check this answer – there’s a few comments to be made:

� Firstly, how about if there’s no surface tension effects? Then ω2 = gk (ρ2 − ρ1) / (ρ1 + ρ2). This should be a
dispersion relation you recognise, and all looks fine!

� Secondly, what about γ = 0 and ρ1 = ρ2? Then ω = 0. We can’t get waves when there isn’t an interface – since
this is the case of just drawing a line in the middle of one big fluid!

� Finally, how about the case of an instability (this is very much not on the IB course!), where ρ1 > ρ2 – in this
case we’d expect the heavier fluid to fall down and the lighter fluid to rise up, and instead of waves we’d get
exponentially growing modes along the interface. Let ω = iσ, where σ is the growth rate (i.e. η ∼ eσt) and our
relation becomes

σ2 =
(ρ1 − ρ2) gk − γk3

ρ1 + ρ2
; (13)

so ρ1 � ρ2 implies faster growth, as we’d expect, and the surface tension acts to stabilise the interface, as we’d
also expect. If there’s some tension in the interface, it won’t want to grow, and actually, very large γ can support
a density profile that’s ‘the wrong way up’.
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