

WARWICK THE UNIVERSITY OF WARWICK

Modelling hydrogels: building networks in the Mathematical Sciences

Mathematical Interdisciplinary Research at Warwick (MIR@W) Day Warwick Mathematics Institute, 9th December 2024

Deswelling response to temperature changes

building macroscopic models for thermo-responsive gels

Joseph Webber and Tom Montenegro-Johnson Mathematics Institute, University of Warwick, UK

joe.webber@warwick.ac.uk

Stoychev et al. Soft Matter 7 (2011)

joe.webber@warwick.ac.uk

Thermo-responsive hydrogels

Equilibrium polymer fraction = the degree of swelling reached by a gel placed in water, free to swell, in the absence of mechanical constraints

- Takes some time water diffusion is **slow**
- Qualitatively, looks like there's a single swollen state and a single dry state either side of a lower critical solution temperature (LCST) $T = T_C$

...most of the time, anyway, if you ignore Afroze, Nies & Berghmans (2000) or Butler & Montenegro-Johnson (2022)

joe.webber@warwick.ac.uk

Thermo-responsive hydrogels

• Affinity for water is encoded by the Flory chi parameter measuring the strength of electrostatic attraction between polymer and water

$$\chi(\phi,\,T) = A_0 + A_1T + (B_0 + B_1T)\phi + \mathcal{O}(T^2,\phi^2)$$

• Can fit the parameters here from observations – somewhat crude and very sensitive to experimental error

Thermo-responsive LENS

$$\mathsf{e}_{ij} = \Big[1 - (\phi/\phi_{00})^{1/3}\Big]\delta_{ij} + \epsilon_{ij} \hspace{0.1 in} \Big| \hspace{0.1 in} |\epsilon_{ij}| \ll 1$$

$$\sigma_{ij}=-p\delta_{ij}+\phirac{\partial\mathcal{W}}{\partial\mathsf{F}_{ik}}\mathsf{F}_{jk}$$

Deformation is, at leading order, isotropic, corresponding to swelling or drying.

Gels are characterised by three material parameters dependent on degree of swelling.

see Webber & Worster (2023)

Measure deformation relative to a "swollen" steady state at a temperature well below the LCST, where $\phi = \phi_{00}$

$$\sigma_{ij} = -\left[p + \Pi(\phi)
ight]\delta_{ij} + 2\mu_s(\phi)\epsilon_{ij}$$

- *p* is the pervadic/pore/Darcy pressure of the fluid
- Π is the osmotic pressure
- μ_s is the shear modulus

$$egin{aligned} \Pi(\phi) &= rac{k_BT}{\Omega_f} iggl[rac{\Omega_f}{\Omega_p} iggl(\phi - \phi^{1/3}iggr) - \phi - \log{(1-\phi)} - \phi^2 \chi + \phi^2 (1-\phi) rac{\partial \chi}{\partial \phi} iggr] \ \mu_s(\phi) &= rac{k_BT \phi_{00}^{1/3}}{\Omega_p} \end{aligned}$$

joe.webber@warwick.ac.uk

Osmotic pressures

 $\sigma_{ij} = -\left[p + \Pi(\phi)
ight]\delta_{ij} + 2\mu_s(\phi)\epsilon_{ij}$

joe.webber@warwick.ac.uk

Osmotic pressures

Phenomenological observations

joe.webber@warwick.ac.uk

The thermo-responsive LENS framework

Can feasibly measure osmotic pressure in a macroscopic experiment σ_{3i} \cdots σ_{2i} σ_{2i} \cdots σ_{2i} \cdots σ_{2i} σ_{2

 $[\]Phi$ (normalised polymer fraction)

Example: deswelling hydrogel bead in water

comparison with Butler & Montenegro-Johnson (2022)

Modelling hydrogels: building networks in the Mathematical Sciences

joe.webber@warwick.ac.uk

 σ

Modelling temperature evolution

- Is this all? Is it reasonable to neglect heat contributions from swelling or drying? How about thermoelasticity?
- Furthermore, how is heat transferred through a responsive gel? Must couple influence from advection, diffusion, heat sources/sinks...

Heat transfer in porous media Treats each phase separately, with a coupling term (e.g. $H(T_{water}-T_{polymer})$ or similar).

- Easy physical interpretation
- Matches nicely with continuum models
- Hard to couple heat sources/sinks and quantify coupling between phases

Thermoelasticity *Starts from the laws of thermodynamics and the free energy density function from before.*

- Captures potentially complicated thermodynamics
- Hard to interpret some terms: can LENS help?

joe.webber@warwick.ac.uk

$$c\frac{\mathrm{d}T}{\mathrm{d}t} = c\,\boldsymbol{q}\cdot\boldsymbol{\nabla}T + cT\,\boldsymbol{\nabla}\cdot\boldsymbol{q} - \frac{1}{3\phi^2}\frac{\partial\phi}{\partial t}\mathrm{tr}\,\sigma + \frac{k(\phi)}{\mu_l}|\boldsymbol{\nabla}p|^2 - \frac{p}{\phi^2}\frac{\partial\phi}{\partial t} + c\kappa\nabla^2T$$
$$\mathbf{tr}\,\sigma = -3P = -3(p+\Pi)$$

joe.webber@warwick.ac.uk

Modelling temperature evolution

N.B. this reduces down to simple diffusion when the gel isn't reconfiguring

joe.webber@warwick.ac.uk

Modelling temperature evolution

• Can compare relative importance of heat transfer methods using two non-dimensional numbers,

$$Le=rac{ au\kappa}{L^2}=rac{\mu_l\kappa}{k\hat{\Pi}}$$

Typically ~10, so diffusion of heat dominates over compositional diffusion

joe.webber@warwick.ac.uk

$$\mathcal{D} = rac{\hat{\Pi}}{c\Delta T}$$

Typically $\sim 1/\Delta T$, so importance of swelling and interstitial flows depends on magnitude of temperature differential

Application: tubes of responsive gel

$$Z_C = 2\,{
m erfc}^{-1}\,igg(rac{1}{2}igg)\sqrt{\kappa t}$$

$$T-T_C=\Delta T\left[2\,{
m erfc}\left(rac{z}{2\sqrt{\kappa t}}
ight)-1
ight]$$

Modelling hydrogels: building networks in the Mathematical Sciences

joe.webber@warwick.ac.uk

Flows through the tube

Josenh Wehher

- Modelling thermo-responsive gels requires an understanding of how the affinity of polymer chains for water changes with temperature
- This can be gained from microscopic models of the gel, or phenomenologically: spotting the LCST and how the equilibrium polymer fraction changes around it is enough to model the behaviour of these gels accurately
- We must be careful when there are sharp drying fronts, however LENS can't handle these
- LENS does, however, allow us to carefully interpret all the terms in the heat transfer equation, closing the system

With thanks to

LEVERHULME TRUST

The University of Warwick, Leverhulme Trust (Research Leadership Award RL-2019-014 for Tom Montenegro-Johnson)

