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Why bother?

• Hydrogels: formed from cross-linked networks of hydrophilic polymer chains surrounded by 
adsorbed water molecules – often >90% water by volume

• Soft, squishy (low shear modulus), stretchable solids, porous in nature and can support 
significant interstitial flows. Easy and cheap to manufacture, but also found naturally.

• “Passive” gels are everywhere: nappy filling, concrete additives, contact lenses, water retention 
for agriculture, evaporative cooling, …

Swell (add water)

Dry/deswell (remove water)

• Hydrogels are found in biological tissues: 
collagen/cellulose/starch

• Models for biofilms?
• Water transport in vascular plants?

• Highly biocompatible owing to water 
content

• Drug delivery
• Tissue engineering

Polymer [volume] fraction
Ranges between >0 and 1
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Hyperelastic and entropic models

• Linear poroelasticity is no good – strains of O(10) are possible. Need to capture nonlinearity.

• Chemical potential + Thermodynamics + Darcy flow = model for gel dynamics (e.g. Cai & Suo JMPS 
2011, Butler & Montenegro-Johnson JFM 2022)

Elastic part
(Gaussian-chain model)

- F is the deformation 
gradient tensor

- Ωp is the volume of a 
single polymer chain

Mixing part
(Flory-Huggins model)

- χ is interaction parameter (hard to fit!)
- Ωf is the volume of a single solvent 

(water) molecule
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Hyperelastic and entropic models

• Gives good predictions – such as the swollen equilibrium polymer fraction ϕ0

• But… unsatisfactory for a number of reasons:
• Messy system of lots of equations: needs numerical solution
• What motivates our elastic or mixing models? Are they valid?
• Steady states: easy. Transient behaviour: hard.
• Fitted parameters don’t easily correspond to macroscopically-measurable phenomena

• Some other approaches have been taken to fix this:
• Large-strain poroelasticity (Bertrand et al., Phys Rev Appl 2016)
• Linear poroelasticity for small swelling (Doi, J Phys Soc Jpn 2009)
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LENS modelling

• Key idea: allow for nonlinearity in isotropic strains corresponding to swelling/deswelling but 
linearise around deviatoric strains that must be small. Measure all displacements relative to the 
fully-swollen equilibrium.

• Pressure is taken to have contributions from the water phase, hydrophilic effects, and bulk 
(isotropic) elasticity, so take P = p + Π

ISOTROPIC DEVIATORIC

Cauchy strain

Displacement from equilibrium

Isotropic part just due to swelling

Small deviatoric part

Cauchy stress

Shear modulus

- p is the pervadic, pore, or Darcy pressure
- Π is the generalised osmotic pressure

Webber & Worster and
Webber, Etzold & Worster

JFM, 2023
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LENS modelling

Interstitial fluid flux

Permeability

Viscosity

• A gel, swollen to any degree, can be described using three material parameters: a shear modulus 
μs(ϕ), an osmotic pressure Π(ϕ) and a permeability k(ϕ)

• This treats the gel as linear elastic with (potentially) nonlinear properties, each of which is 
macroscopically meaningful:

• The shear modulus governs the initial incompressible response to forcing
• The osmotic pressure governs the steady state reached where water is expelled or drawn in
• The permeability sets the timescale over which an adjustment occurs

Webber & Worster and
Webber, Etzold & Worster

JFM, 2023
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LENS modelling

Phase-averaged flux
of water and polymer

Slow nonlinear diffusion of water

Note: we have not prescribed constitutive laws, and can in fact deduce forms of the three parameters 
given, say, Flory-Huggins theory and Gaussian-chain elasticity

Webber & Worster and
Webber, Etzold & Worster

JFM, 2023

Combine with conservation of water, 
conservation of polymer, and force-free 
momentum balance
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LENS modelling

Phase-averaged flux
of water and polymer

Slow nonlinear diffusion of water

Note: we have not prescribed constitutive laws, and can in fact deduce forms of the three parameters 
given, say, Flory-Huggins theory and Gaussian-chain elasticity

Webber & Worster and
Webber, Etzold & Worster

JFM, 2023

Combine with conservation of water, 
conservation of polymer, and force-free 
momentum balance

In general, need another piece of the puzzle (Webber, Etzold & Worster, JFM 2023b) to find 
displacement field
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Responsive gels

• Gels can be engineered to respond to a number of external stimuli: heat, light, pH, chemical 
concentration…

• Thermo-responsive gels have a lower critical solution temperature (LCST) above which the 
polymer rapidly loses its affinity for water, leading to shrinkage. This process is reversible.

• Usually modelled by having a temperature-dependent Flory chi parameter, measuring the 
strength of intermolecular interactions between polymer and water
• Constrains us to messy nonlinear approaches
• Microscopic modelling is hard
• Many different parameters to fit (Butler & Montenegro-

Johnson, JFM 2022)
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(Thermo-/chemo-/photo-)responsive LENS

Osmotic 
pressure
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Negative osmotic pressure
= propensity to deswell, water driven out

Positive osmotic pressure
= propensity to swell, water drawn in
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(Thermo-/chemo-/photo-)responsive LENS

Osmotic 
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Above the LCST, there is a new, higher, 
equilibrium polymer fraction where Π=0
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(Thermo-/chemo-/photo-)responsive LENS
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(Thermo-/chemo-/photo-)responsive LENS

Osmotic 
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Above the LCST, there is a new, higher, 
equilibrium polymer fraction where Π=0

This transition is sharp for 
PNIPAM gels and occurs 

close to 300K, motivating 
some simplifying 

assumptions on Π
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Smart gels as machines

Sensors
- Can convert changes in 

the local environment to 
changes in shape

- Changes are large and 
predictable

e.g. a gel membrane 
becomes impermeable 
when a chemical 
concentration is high 
enough.

Actuators
- Programmable shape 

change is possible via 
swelling or deswelling

- Thermoresponsive gels 
can be impregnated with 
gold nanoparticles, and 
lasers lead to heating 
and deswelling

e.g. soft robotic grippers or 
valves that can be opened 
or closed
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Actuators
- Programmable shape 

change is possible via 
swelling or deswelling

- Thermoresponsive gels 
can be impregnated with 
gold nanoparticles, and 
lasers lead to heating 
and deswelling

e.g. soft robotic grippers or 
valves that can be opened 
or closed

Computers
Take input from sensors and 
use it to control actuators. 
Logic circuits make 
decisions and can provide 
feedback mechanisms.

e.g. artificial pancreas, smart 
pumps, hygrostat logic 
circuits,…

Smart gels as machines

Sensors
- Can convert changes in 

the local environment to 
changes in shape

- Changes are large and 
predictable

e.g. a gel membrane 
becomes impermeable 
when a chemical 
concentration is high 
enough.

…all in one gel component?
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• Gels are already being used as actuators, and microfluidic devices employ thermo- and chemo-
responsive mechanisms

• For second-scale responses, need L ~ 10-4 m, which constrains us to microfluidics.

• We also have no way to communicate information between gel devices: computers require 

networking or connections between sensor and actuator to function.

• Both of these problems can be unlocked using the modelling we’ve already introduced

Missing pieces: two gaps

~10-3 kg m-1 s-1

~104 kg m-1 s-2 ~10-15 m2



Problem 1: responsive gels are slow
Building displacement pumps from hydrogel tubes

Image from Freepik (freepik.com)

Maslen et al. Macromol Rapid Commun 2022
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Porous media as a network of tubes

• Swelling and deswelling is more rapid when micropores are drilled into the gel structure, since 
the movement of water is no longer constrained by slow diffusion through the nanopores

• This technique has been used to make faster actuators (Spratte et al. Adv Intell Syst 2022, Maslen 
et al. Macromol Rapid Commun 2022)

• Can’t just use a scaling argument to find how drilling micropores will affect response times; need 
to model the whole system! This hard traditionally, with a complex geometry, and perhaps easier 
with LENS
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Displacement modelling

• To make modelling easier, take a slenderness assumption ε = a1 / L ≪ 1

• Assume that the deswelling is locally isotropic, and therefore

where ϕ is the polymer fraction on the inside of the tube, at leading order.

• Take 

Found by plugging in to 
diffusion equation and scaling 
(sep. variables)

=0 on inside of tube
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Polymer fraction evolution

• Separation of variables implies that we must just solve for ϕ1, with the radial structure function 
deduced from boundary conditions on the outside of the tube:

• Boundary conditions arise from:
• Decay in perturbations from equilibrium as z → ∞ (∂ϕ/∂z → 0)
• Symmetry around z=0 (∂ϕ/∂z = 0)
• No stress on outer boundary (ϕ= ϕ0(T) on r=b1) which gives

Total (phase-
averaged) flux

Separation 
“constant”

Nonlinear diffusivity
Thinness of tube 
a0 / a1
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Heat transfer

• We have a model for the response of a tube to a time- and space-
varying temperature field T(z, t)

• If we instantaneously raise the temperature above the LCST, water is 
expelled into the lumen and into the surroundings and the tube 
collapses uniformly (flows are a second-order effect that don’t change 
the dynamics in a thin tube)

• Introduce the Lewis number Le which is the ratio of heat diffusivity to 
compositional diffusivity. For these tubes, Le ~ 10-100 and so we 
make the large-Le approximation that a heat pulse is purely diffusive

Φ=ϕ / ϕ00
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Step/tanh approximation

• Non-dimensionalise: times on the poroelastic timescale, axial lengths on the lengthscale L, radial 
lengths on a1

• The heat front (behind which the temperature is above the LCST) is given by
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Step/tanh approximation
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Flows in the gel

Flows out of the gel and into the surrounds

The principal route for water loss – the outside 
instantaneously dries and interstitial flows are sent towards 
the drier gel regions

Flows through the gel

Very slow, with limited net flux since the tube is thin 
and transport is mediated by the low permeability

Flows through the lumen

Poiseuille flow driven through the middle; fastest, 
given by “squeezing” fluid out of place
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Fast(ish) flows in the lumen
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• Thinner tubes have a faster 
response and so lead to larger 
peak velocities at the deswelling 
front

• However, the sharpness of the 
profile is greater when ℓ → 1 so 
the total integrated transport is 
approximately constant in ℓ 

• Have an expression for fluxes and 
response times:
• Chain together to make 

porous media
• Scaling law from many joined 

tubes



Problem 2: responsive gels don’t talk
Oscillating reactions lead to communication

Image from Freepik (freepik.com)
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The BZ reaction

• There are very few chemical reactions that naturally oscillate with a predictable period, and even 
fewer that are (relatively) straightforward to model mathematically

• The BZ (Belousov-Zhabotinsky) reaction was discovered in the mid-20th century and is often 
modelled using reduced systems of autocatalytic reactions

• In this proof-of-concept, we will use the Brusselator model where

A → X

2X + 3Y → 3X

B + X → Y + D

X → E 

• Clearly D and E have no effect on the dynamics

• Assume A, B are in excess so their concentrations are constant
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The BZ reaction

• The time spent on the limit cycle can be 
approximated: dynamics are fast in 
regions 1-3 until we collapse onto the X 
nullcline
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Coupling with gel dynamics

• Oscillating chemical reactions have been coupled with chemo-responsive gels to create periodic 
shape changes in the modelling of heart tissues (Yoshida, Biophysics Nagoya-Shi 2012), the 
creation of crawling microbots (Mao et al. Extreme Mech Lett 2020) and the development of soft 
machines (Nava-Medina et al. Adv Mater Technol 2021)

• In general, a catalyst molecule is chemically-bonded to the gel scaffold so that reaction rates 
increase in a dry gel and decrease in a swollen one

• The polymer will lose its affinity for water when the concentration of Y exceeds a set threshold
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A model system

Pumping of interstitial fluid in gel
Equal to zero outside of gel, given by fluid 
fluxes within the gel (water flow from 
swollen to dried regions)

Swelling-dependent catalysis

Chemical diffusion
Faster in water than impermeable gel

Couple this with 
familiar gel 
dynamics
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A model system

Parameters: A=1, B=5, L=25, a0 = 0.1, reaction rate 5 times 
faster in right-hand gel, scaled diffusivities are 1000 in water, 0.2 
in gel. YC = 5 and the equilibrium polymer fraction doubles above 
the critical threshold. The Damköhler number is 1.

• This system can be modelled numerically, 
taking into account:
• Transport of water and solute into and 

out of gels as they deswell and swell
• Molecular diffusion of chemical species
• The BZ reaction in each gel
• Changes to reaction rates due to 

swelling and deswelling

• Lots of timescales here, introduce

i.e. assume reconfiguration is fast!

Rate constant 
for reaction

Gel permeability
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Coupled oscillator model

Parameters: A=1, B=5, L=25, a0 = 0.1, reaction rate 5 times 
faster in right-hand gel, scaled diffusivities are 1000 in water, 0.2 
in gel. YC = 5 and the equilibrium polymer fraction doubles above 
the critical threshold. The Damköhler number is 1.

We can reduce these PDEs to a simpler coupled 
oscillator model, assuming:

• Diffusion is fast in gels, so chemical 
concentration is approximately constant 
within

• Diffusion is fast in water, so there are linear 
profiles here

• Neglect osmotic pumping
• Diffusion is much faster in water than in 

gel so the diffusive flux in the water 
approximates the flow of chemical into or 
out of a gel.
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Coupled oscillator model

Parameters: A=1, B=5, L=25, a0 = 0.1, reaction rate 5 times 
faster in right-hand gel, scaled diffusivities are 1000 in water, 0.2 
in gel. YC = 5 and the equilibrium polymer fraction doubles above 
the critical threshold. The Damköhler number is 1.

• Diffusion is fast in gel and water
• Neglect osmotic pumping
• Diffusion is much faster in water than in 

gel

• Damköhler number is small so gels 
instantaneously reach equilibrium

where e.g. 

Reaction terms
Coupling strength
Q = Dwater / a0L
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Coupled oscillator model

Full numerical solution
Y evaluated at x=L

Coupled oscillators

Parameters: same as before
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Gels squeal under pressure

• In the first example, we arbitrarily set the reaction rate faster in the second gel than in the first – 
this gave limit cycles of different periods on each side

• The polymer fraction varies under changes in chemical concentration, but it can also be varied by 
applying a strain to one gel

 

• For stronger coupling (Q large), there is a penalty to a nonzero value of X2-X1 or Y2-Y1 – 
therefore, if the two gels are especially close or the diffusion of chemical species is fast through 
the gap, there is synchronisation in their periods

Applying a fixed strain E(t)

This allows us another control on the 
polymer fraction and therefore on the 
reaction rate here

For a stiff gel, Φ≈(1+E)2
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Gels squeal under pressure
Parameters: same as before with E=1 on second gel

Time period for 
second oscillator

Parameter measuring 
stiffness of gel

More compression, higher 
polymer fraction, higher rate 

of reaction
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Where does this leave us?

• We can modulate the compression on the second 
gel and measure the time period of the oscillations 
of the first gel. In the limit of strong coupling

• Seeing as the reaction rate of the first gel is known, 
this allows us to measure the reaction rate of the 
second gel and therefore find the compression that 
is being applied, allowing for communication
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Next steps

Actuators
- Actuators can be created 

with tuneable response 
times

- Bilayers/materials with 
varying porosity allow for 
non-reciprocal shape 
changes and the design 
of complex devices

- Automatic smart pumps
- Can devise a general 

model for microporous 
hydrogels 

Computers
- Gels can communicate 

with one another to 
coordinate actuators and 
sensors

- Could string together 
switches to build logic 
gates

Sensors
- Can convert changes in 

the local environment to 
changes in shape

- Changes are large and 
predictable

e.g. a gel membrane 
becomes impermeable 
when a chemical 
concentration is high 
enough.

…all in one gel component?



UCL Mathematical Biology Meeting 30/10/24joe.webber@warwick.ac.uk

Even though hydrogels have been modelled for decades, there’s still a need for simple, 
macroscopic models that capture the key phenomena without recourse to microscopic modelling: 
these can both follow experimental advances (tubes) or inform new implementations 
(communicating gels)

Next steps

With thanks to
Tom Montenegro-Johnson, Grae Worster, funding from Leverhulme Trust Research Leadership Award ‘Shape-
transforming active microfluidics’



Modelling hydrogels: building networks in 

the Mathematical Sciences
Mathematical Interdisciplinary Research at Warwick (MIR@W) Day

Warwick Mathematics Institute, 9th December 2024

Organisers: Joe Webber and Tom Montenegro-Johnson

1. Living gels, living with gels: hydrogels in microbiology 

and medicine

2. At the surface and through the pores: transport and 

interfacial behaviour

3. Feeling the surroundings: hydrogels as smart materials

Photo credit: Grae Worster

Confirmed speakers

- Matthew Butler (UCL)

- Matt Hennessy (Bristol)

- Chris MacMinn (Oxford)

- Philip Pearce (UCL)

- Draga Pihler-Puzović (Manchester)

- Grae Worster (Cambridge)
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