Continuum Mechanics group seminar University of Strathclyde, Wednesday 1st October 2025, 13:00

A tractable framework for modelling hydrophilic large-swelling gels

Joseph Webber and Tom Montenegro-Johnson Mathematics Institute, University of Warwick

Grae WorsterDAMTP, University of Cambridge

- can comprise >99% water by volume but remain solid
- behave elastically with low shear modulus
- swell or dry to extreme degrees when water is added or removed

Final radius of ~1.5cm

Hydrogels

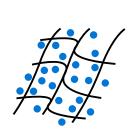
Fully-nonlinear models

$$W = W_{
m mix} + W_{
m elastic}$$

- Energy density function with contributions from mixing (entropy, electrostatic interactions, temperature-dependence, ...) and elasticity (of individual polymer chains).
- Accurate, models large strains
- Not analytically tractable, parameters hard to determine

Flory & Rehner (1943a,b), Cai & Suo (2012), Bertrand et al. (2016), Butler & Montenegro-Johnson (2022)

Fully-linear models


$$rac{\partial \phi}{\partial t} = D rac{\partial^2 \phi}{\partial x^2} \quad \left(D = K + rac{4}{3} \mu
ight).$$

- Based on linear poroelasticity, interstitial flow via Darcy's law. Treats gel as a linear-elastic material.
- Analytically tractable, clear physics, 'macroscopic' parameters
- Can't deal with large swelling strain

Biot (1941), Tanaka & Fillmore (1979), Doi (2009)

A detour into chemical physics

Usual approach: an energy density function with contributions from everything that could affect behaviour.

$$\mathcal{W} = \frac{k_B T}{2\Omega_p} \left[\text{tr} \left(\mathbf{F_d} \, \mathbf{F_d^T} \right) - 3 + 2\log \phi \right] + \frac{k_B T}{\Omega_f} \left[\frac{1-\phi}{\phi} \log(1-\phi) + \chi(\phi,\,T)(1-\phi) \right]$$

Gaussian-chain elasticity

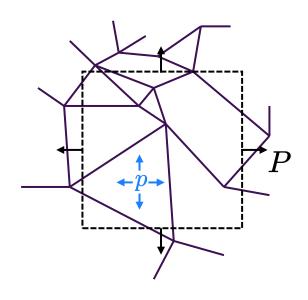
Mixing of polymer and water

At equilibrium, elasticity balances mixing $(\partial W/\partial \lambda_i = 0)$

$$\phi_0 \approx \left\lceil \frac{\Omega_p}{\Omega_f} \left(\frac{1}{2} - \chi(T) \right) \right\rceil^{-3/5}$$

Often, chi parameter is very close to ½, but polymer molecules are much bigger than water

Away from equilibrium, things are nastier!


$$\sigma_{
m ij}^{
m eff} = \phi rac{\partial \mathcal{W}}{\partial \mathsf{F}_{
m ik}} \mathsf{F}_{
m jk}$$

Poromechanics

A geophysicist's approach: separate contributions from stress into a 'pore pressure' and an 'effective stress'

$$oldsymbol{\sigma} = -p \mathbf{I} + oldsymbol{\sigma}_{ ext{eff}}$$

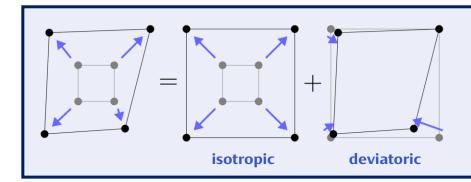
Bulk pressure (or thermodynamic pressure) the isotropic stress exerted by a sample of gel; our familiar concept of pressure

Pervadic pressure (or Darcy pressure, "pore" pressure) is the pressure as would be measured by a transducer separated by a partially-permeable membrane from the gel.

In soil science: p is the pore pressure, P is the overburden pressure In colloids: p is [related to] the chemical potential, Π is the osmotic pressure

 $P=p+\Pi$ osmotic effects? isotropic elasticity? generalised osmotic pressure

p drives flows by Darcy's law:


Poromechanics

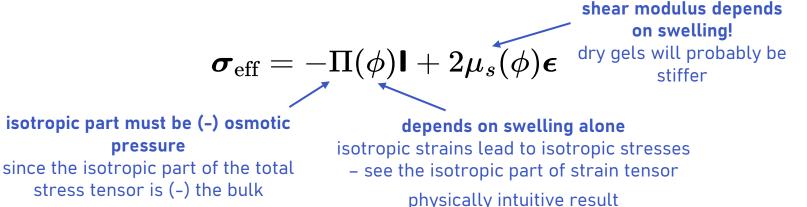
Linear (Biot) poroelasticity specifies a linear-elastic constitutive relation linking strains to effective stresses. Hydrogels swell a lot, with potentially large strains: linear is no good!

One way around this: use finite strain (nonlinear) elastic models for effective stress.

e.g. Hencky model
$$m{\sigma}_{ ext{eff}} = rac{\Lambda \phi}{2} \operatorname{tr}ig(\ln(\mathbf{F}\mathbf{F}^{ ext{T}})ig)\mathbf{I} + rac{M-\Lambda}{2} \ln(\mathbf{F}\mathbf{F}^{ ext{T}})$$

assume linearity only in the **deviatoric strain** from some **fully-swollen reference state**

"linear-elastic materials with properties dependent on swelling state"


The linear-elastic-nonlinear-swelling model

Therefore, the deviatoric part of the effective stress tensor must depend linearly on the deviatoric part of the Cauchy strain (the isotropic part could be huge)

$$\mathbf{e} = \frac{1}{2} \left[(\boldsymbol{\nabla} \boldsymbol{\xi}) + (\boldsymbol{\nabla} \boldsymbol{\xi})^\mathsf{T} \right] = \left[1 - \left(\frac{\phi}{\phi_0} \right)^{1/3} \right] \mathbf{I} + \boldsymbol{\epsilon}$$
 deviatoric strain assumed small depends only on degree to which gel is swollen

This allows us to construct a stress tensor like usual

pressure

JJW & Worster (2023) J. Fluid Mech. **960:**A37

The linear-elastic-nonlinear-swelling model

$$oldsymbol{\sigma} = -p \mathbf{I} + oldsymbol{\sigma}_{ ext{eff}} \ P = p + \Pi$$

$$\mathbf{e} = rac{1}{2}ig[(oldsymbol{
abla}oldsymbol{\xi}) + (oldsymbol{
abla}oldsymbol{\xi})^{\mathsf{T}}ig] = egin{bmatrix} 1 - igg(rac{\phi}{\phi_0}igg)^{1/3} \end{bmatrix}oldsymbol{\mathsf{I}} + oldsymbol{\epsilon}$$

$$egin{aligned} oldsymbol{\sigma}_{ ext{eff}} &= -\Pi(\phi) \mathbf{I} + 2\mu_s(\phi) oldsymbol{\epsilon} \ oldsymbol{u} &= (1-\phi) (oldsymbol{u_w} - oldsymbol{u_p}) \ oldsymbol{q} &= (1-\phi) oldsymbol{u_w} + \phi oldsymbol{u_p} \end{aligned}$$

 Have an expression for stress in the gel, so conservation of momentum links pressure gradients to deviatoric strains,

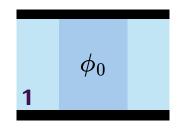
$$m{
abla} \cdot m{\sigma} = 0$$
 so $m{
abla} p = -m{
abla} \Pi(\phi) + 2m{
abla} \cdot [\mu_s(\phi) m{\epsilon}]$ pervadic pressure gradients oppose osmotic ones

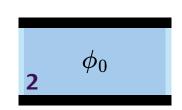
 Since gradients in pervadic pressure drive flows, this allows us to describe gel reconfiguration (when coupled with conservation of polymer and water)

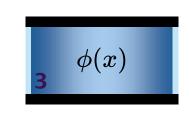
$$rac{\partial \phi}{\partial t} + m{q} \cdot m{
abla} \phi = m{
abla} \cdot (\phi m{u})$$
 alongside $m{u} = -rac{k(\phi)}{\mu_l} m{
abla} p$

$$rac{\partial \phi}{\partial t} + m{q} \cdot m{
abla} \phi = m{
abla} \cdot \left\{ rac{k(\phi)}{\mu_l} igg[\phi rac{\partial \Pi}{\partial \phi} + rac{4 \mu_s(\phi)}{3} igg(rac{\phi}{\phi_0} igg)^{1/3} igg] m{
abla} \phi
ight\}$$

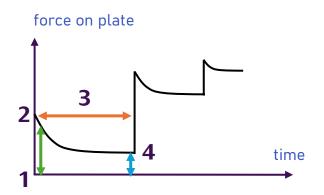
Characterising a gel

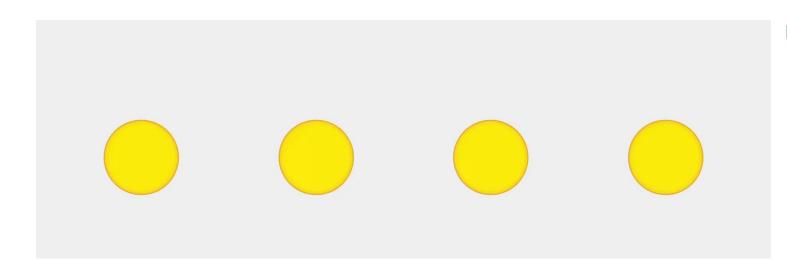

$$rac{\partial \phi}{\partial t} + m{q} \cdot m{
abla} \phi = m{
abla} \cdot \left\{ rac{m{k}(\phi)}{\mu_l} igg[\phi rac{\partial \Pi}{\partial \phi} + rac{4\mu_s(\phi)}{3} igg(rac{\phi}{\phi_0} igg)^{1/3} igg] m{
abla} \phi
ight\}$$


$$oldsymbol{\sigma} = -[p + \Pi(oldsymbol{\phi})] oldsymbol{\mathsf{I}} + 2\mu_s(\phi) oldsymbol{\epsilon} \qquad oldsymbol{u} = rac{k(\phi)}{\mu_l} oldsymbol{rac{\partial \Pi}{\partial \phi}} + rac{4\mu_s(\phi)}{3\phi} igg(rac{\phi}{\phi_0}igg)^{1/3} igg] oldsymbol{
abla} \phi$$


Shear modulus characterises the stiffness of a hydrogel and describes the initial elastic response before water diffuses through the structure

Osmotic pressure characterises the affinity for water ('desire' to swell or deswell)

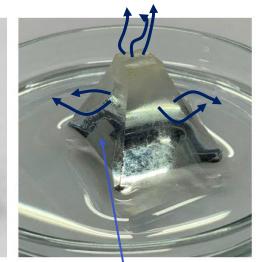

Permeability describes the resistance to viscous flow through the pore scaffold

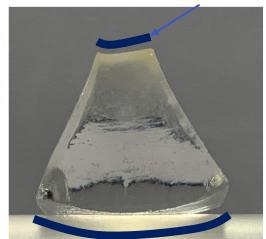


Insights from LENS modelling

Uniaxial problems are easy: shape set by polymer conservation

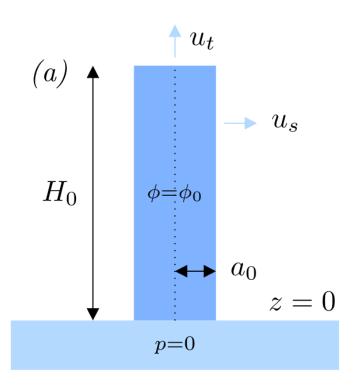
1+1 dimensional advection-diffusion equation

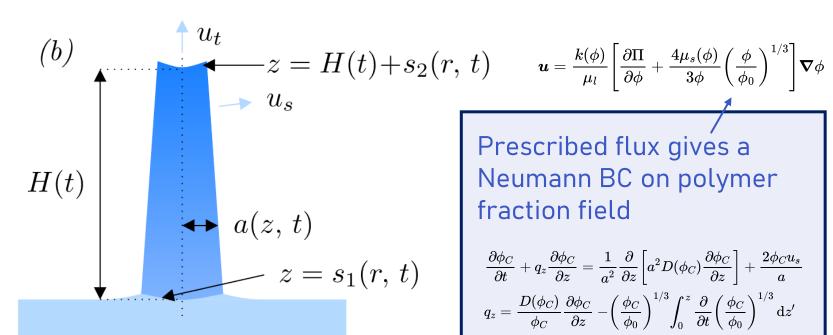

BC at gel-water interface set by stress and pressure balance


More complex geometries = hard!

Need to relate swelling state to displacement to find how the shape evolves

$$abla^4 oldsymbol{\xi} = -3 oldsymbol{
abla}
abla^2 (\phi/\phi_0)^{1/3}$$




curved interfaces

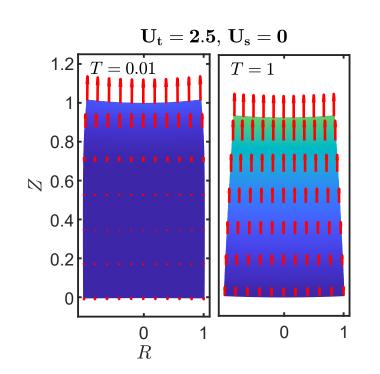
differential drying

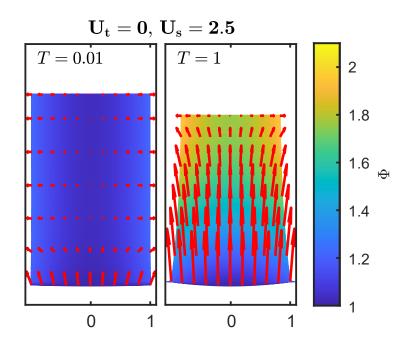
Drying of slender cylinders

$$egin{aligned} rac{\partial \phi}{\partial t} + m{q} \cdot m{
abla} \phi = m{
abla} \cdot \left\{ rac{k(\phi)}{\mu_l} igg[\phi rac{\partial \Pi}{\partial \phi} + rac{4\mu_s(\phi)}{3} igg(rac{\phi}{\phi_0} igg)^{1/3} igg] m{
abla} \phi
ight\} \end{aligned}$$

$$\phi(r,\,z,\,t)=\phi_C(z,\,t)+arepsilon^2\phi_1(r,\,z,\,t)$$

separation of variables implies that

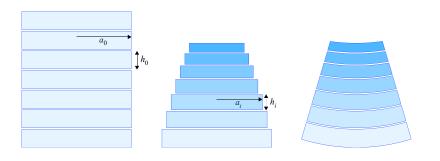

- $\varepsilon = a_0/H_0$ so only square of the aspect ratio should be small
- $\phi_1 \propto r^2$ parabolic polymer fraction profiles


Prescribed flux gives a Neumann BC on polymer fraction field

$$egin{aligned} rac{\partial \phi_C}{\partial t} + q_z rac{\partial \phi_C}{\partial z} &= rac{1}{a^2} rac{\partial}{\partial z} \left[a^2 D(\phi_C) rac{\partial \phi_C}{\partial z}
ight] + rac{2\phi_C u_s}{a} \ q_z &= rac{D(\phi_C)}{\phi_C} rac{\partial \phi_C}{\partial z} - \left(rac{\phi_C}{\phi_0}
ight)^{1/3} \int_0^z rac{\partial}{\partial t} \left(rac{\phi_C}{\phi_0}
ight)^{1/3} \mathrm{d}z' \ D(\phi_C) &= rac{k}{\mu_l} \left[rac{K\phi_C}{\phi_0} + rac{4\mu_s}{3} \left(rac{\phi_C}{\phi_0}
ight)^{1/3}
ight] \end{aligned}$$

+ use polymer conservation to set the geometry of the cylinder as it dries

Drying of slender cylinders



$$a(z,\,t)=(\phi_C/\phi_0)^{-1/3}a_0$$

$$a(z,\,t) = (\phi_C/\phi_0)^{-1/3} a_0 \qquad \qquad h_0 = \int_0^{H(t)} \left[1 - (\phi_C/\phi_0)^{1/3}
ight] \mathrm{d}z'$$

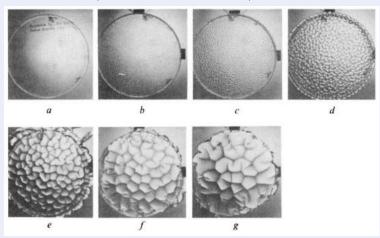
$$s_1(r,\,t) = rac{r^2}{2} rac{\partial}{\partial z} igg(rac{\phi_C}{\phi_0}igg)^{1/3}igg|_{z=0}\,.$$

$$\left. s_1(r,\,t) = rac{r^2}{2} rac{\partial}{\partial z} igg(rac{\phi_C}{\phi_0}igg)^{1/3}
ight|_{z=0} \qquad \left. s_1(r,\,t) = rac{r^2}{2} rac{\partial}{\partial z} igg(rac{\phi_C}{\phi_0}igg)^{1/3}
ight|_{z=H(t)}$$

Expression for radius suggests isotropic contraction at a fixed vertical position

Height follows from polymer conservation

Differential drying creates the curved shapes at the top and bottom


Where can we go from here?

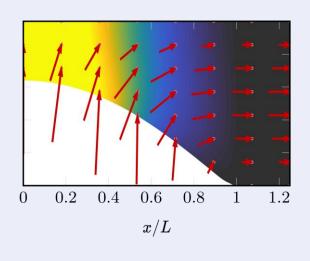
Wrinkling instabilities

JJW & Worster Phys. Rev. E 109:044602 (2024)

Wrinkles form and coarsen as gels swell, owing to anchoring from a partially-dried core.

Tanaka et al., Nature 325:796-798, 1987

Responsive hydrogels


JJW & Montenegro-Johnson J. Fluid Mech. 1009:A38 (2025)

Gels that swell or deswell in response to external stimuli

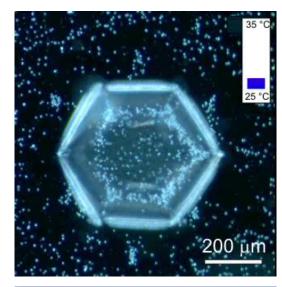
Freezing soft gels

JJW & Worster Proc. Roy. Soc. A 481:20240721 (2025)

Ice can't form inside hydrogel pores owing to capillarity, so it forms as segregated 'chunks' that grow through a process known as cryosuction.

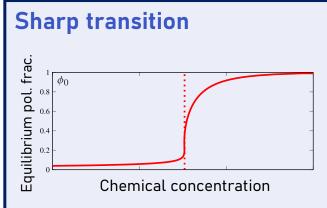
Chemically-responsive gels deswell once the concentration of a certain species (usually an ion of some kind) crosses some critical threshold.

Mechanism: ions are attracted to charged parts of the polymer chains, which they stick to and the chains 'refold', driving out water.


This process is reversible, and so chemical signals can be converted to mechanical changes.

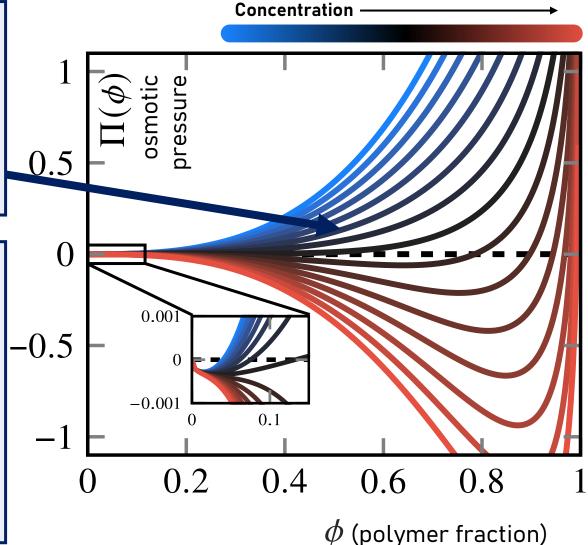
$$\mathcal{W} = rac{k_B T}{2\Omega_p} ig[ext{tr} \left(\mathbf{\mathsf{F_d}} \, \mathbf{\mathsf{F_d^T}}
ight) - 3 + 2\log \phi ig] + rac{k_B T}{\Omega_f} igg[rac{1-\phi}{\phi} \log(1-\phi) + igg[\chi(\phi,\,T) (1-\phi) igg] igg]$$

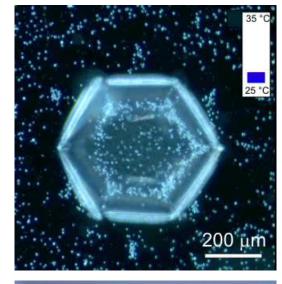
Recall that $\sigma_{ij}^{eff}=\phi \frac{\partial \mathcal{W}}{\partial \mathsf{F}_{ik}}\mathsf{F}_{jk}$ and thus the influence of the chi parameter (after

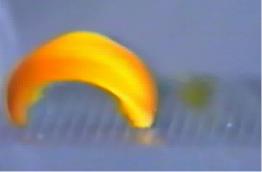

much algebra) is found to be only in the isotropic part

Chemical response just affects the osmotic pressure

- **1. Stoychev** *et al.* Soft Matter **7** (2011)
- **2.** Maeda et al. Advanced Materials **19** (2007)



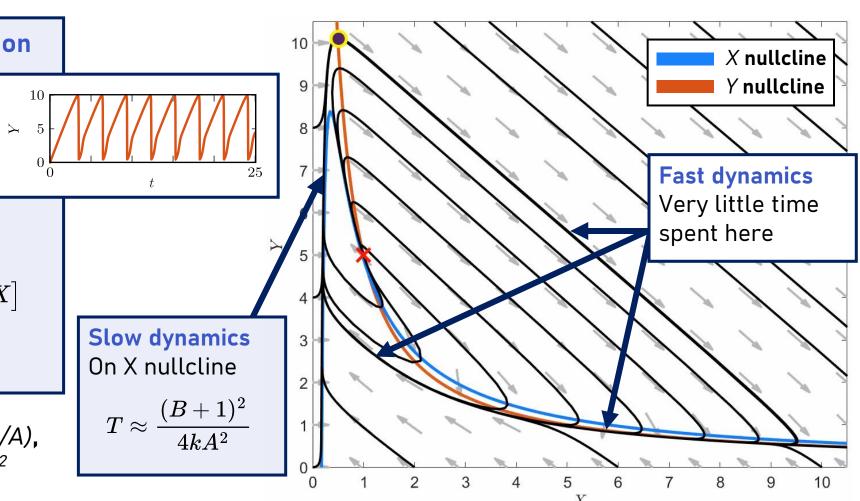

Phenomenology informs the model


$$\phi_0(Y) = egin{cases} \phi_{00} & Y \leq Y_C \ \phi_{0\infty} & Y > Y_C \end{cases}$$
 -0.5

With a linear osmotic pressure for simplicity

$$\Pi(\phi) = \Pi_0 rac{\phi - \phi_0(Y)}{\phi_0(Y)}$$

- **1. Stoychev** *et al.* Soft Matter **7** (2011)
- 2. Maeda et al. Advanced Materials 19 (2007)


Brusselator model for reaction

$$A
ightarrow X \ 2X+Y
ightarrow 3X \ B+X
ightarrow Y+D \ X
ightarrow E$$

assume A and B are in excess

$$egin{aligned} rac{\mathrm{d}X}{\mathrm{d}t} &= k \left[A + X^2Y - (1+B)X
ight] \ rac{\mathrm{d}Y}{\mathrm{d}t} &= k \left[BX - X^2Y
ight] \end{aligned}$$

One fixed point at (X, Y) = (A, B/A), unstable provided $B > 1 + A^2$

Advection with flow

Assume no flow in water, Darcy flow in gel

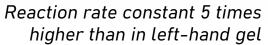
$$u=-rac{k(\phi)}{\mu_l}rac{\partial p}{\partial x}=-rac{D(\phi,\,Y)}{\phi}rac{\partial \phi}{\partial x}$$

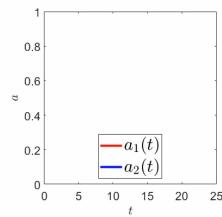
Gel dynamics

Decoupled, but drives interstitial flows!

Reaction (only in gel)

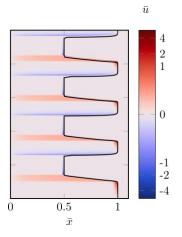
$$k[A + X^{2}Y - (1+B)X]$$
 (c=X)

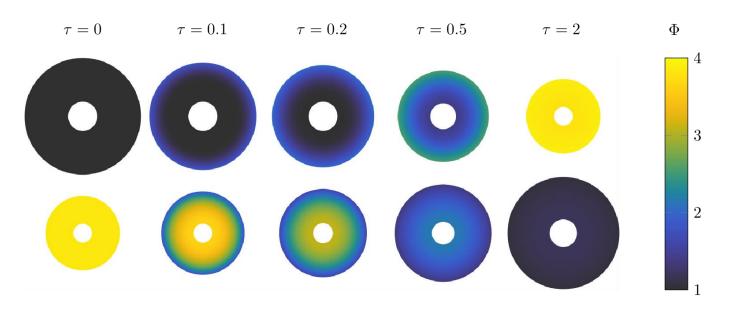

$$k\left[BX-X^2Y\right]$$
 (c=Y)

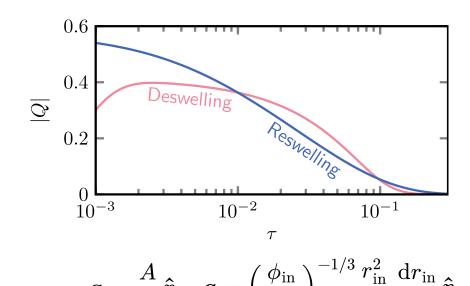

$$rac{\partial c}{\partial t} + u rac{\partial c}{\partial x} = \mathcal{R} + D_c rac{\partial^2 c}{\partial x^2}$$

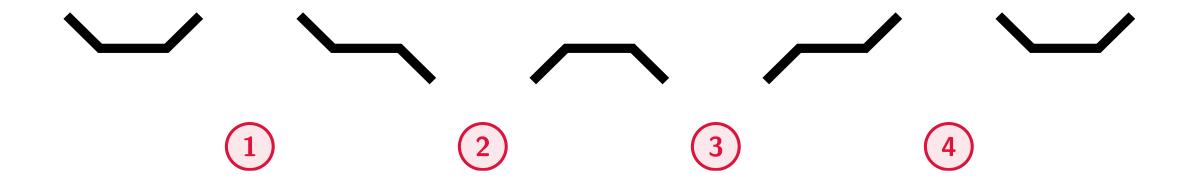
Diffusion

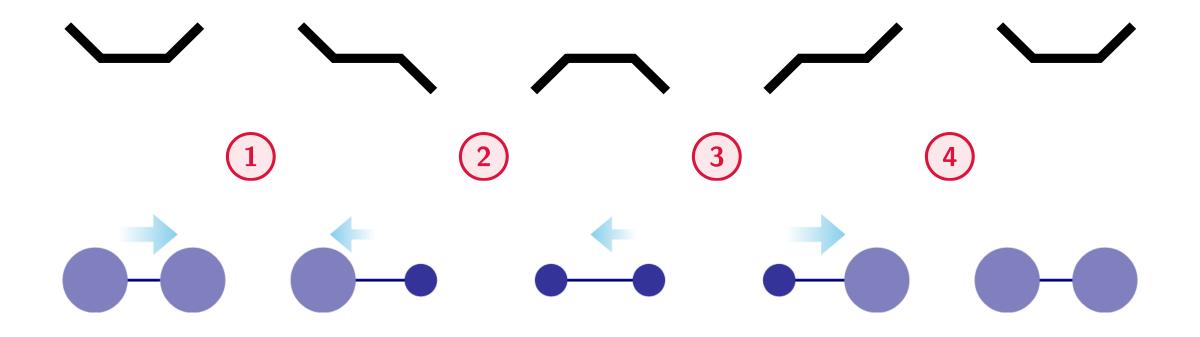
Different coefficient in water and gel




Self-oscillating pumps?

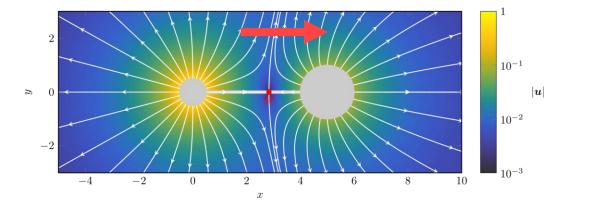

Where does the water go when a gel deswells?


- Pumped out of the matrix into the bath (flux $(1-\phi)u_w$)
- Occupies the space where the gel once was interface moves at u_p



Net flux is thus $(1 - \phi)u_w - \phi u_p = (1 - \phi)(u_w - u_p) + u_p = u + u_p = q$ which is a solenoidal quantity. In most uniaxial geometries, this has to be zero everywhere if it's zero somewhere so these gels can't pump!

Flow field around the two-sphere swimmer

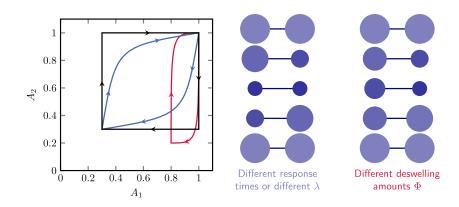

Each sphere acts like a source or sink of strength q – if there were just one sphere with velocity U_1 , the surrounding flow field would be

$$m{u} = rac{3}{4} m{U}_1 \left[rac{a_1}{r} + rac{a_1^3}{3r^3}
ight] + rac{3}{4r^2} (m{U}_1 \cdot m{x}) m{x} \left[rac{a_1}{r} - rac{a_1^3}{r^3}
ight] + rac{q_1 m{x}}{4\pi r^3}$$

We can then use the Faxén relations for a sphere to find the motion of the other sphere, calculating the "first reflection"

$$m{U} = rac{m{F}}{6\pi\mu_l a} + m{u_\infty(0)} + rac{a^2}{6}
abla^2m{u_\infty(0)}$$
 measured in coordinates centred on sphere 2

Then, do the same the other way around and equate velocities...

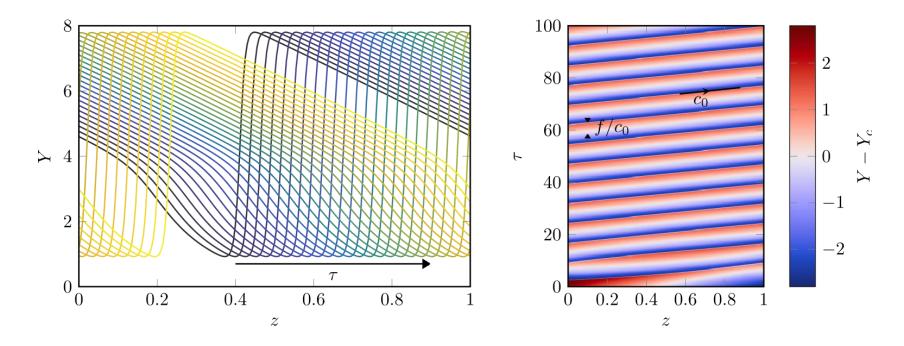


Drifting

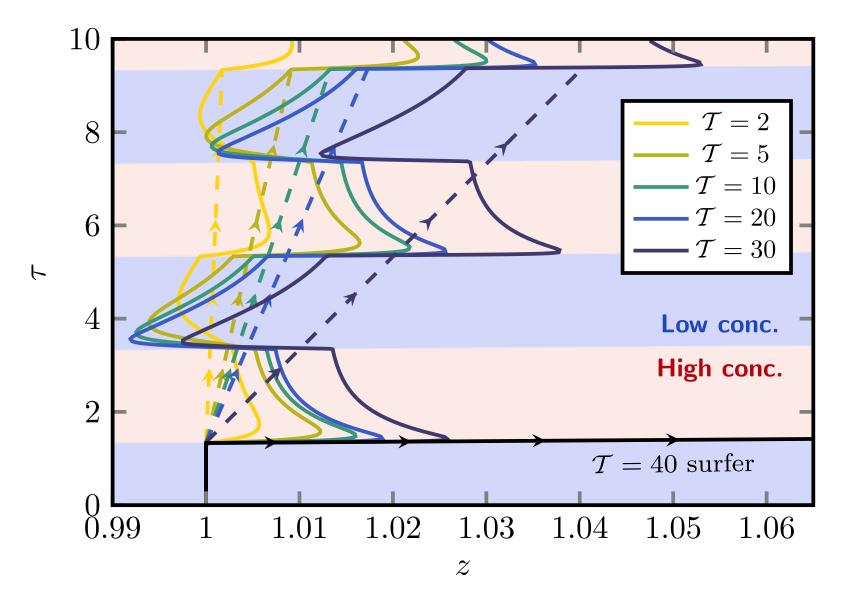
The strength of the point source can be related to the radii of the two spheres through the parameter λ (the ratio of inner to outer radius of gel in the sphere) and the initial outer radius ρ_{20}

$$U = \frac{1}{3\ell^2} \frac{a_1 a_2}{a_1 + a_2} \left[1 - \frac{1}{\ell} \frac{a_1 a_2}{a_1 + a_2} \left(\frac{2}{3} - \frac{a_1^2 + a_2^2}{\ell^2} \right) \right]^{-1} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\lambda_1^3 a_1^3}{(\rho_{20})_1} - \frac{\lambda_2^3 a_2^3}{(\rho_{20})_2} \right)$$

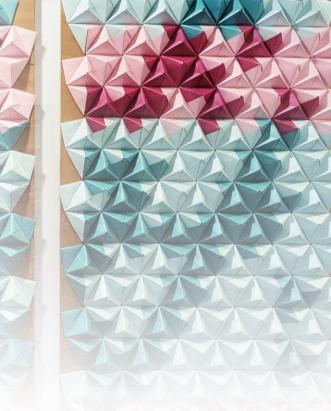
Integrate over one stroke cycle to find a net drift, and can investigate how this occurs in more physically realisable sources of asymmetry (e.g. different extents of drying, different rates of drying, different thicknesses of gel.


In this case, the response times for each sphere are set differently, but they are otherwise identical

$$\mathcal{T} = t_1/t_2$$


Surfing

With spatial variation the BZ reaction can have travelling wave-like solutions with a duration f/c_0 and speed c_0


What happens if the asymmetry or rate of deswelling is sufficiently high that the instantaneous speed outpaces the chemical wave?

Surfing

Conclusions and applications

- Hydrogels can be modelled as linear-elastic materials with properties that depend on swelling state
- This captures the nonlinearity of swelling but retains the analytic tractability of linear poroelastic models
- Easy to extend to responsive gels: equilibrium (force-free)
 state just varies with stimulus so the problems are decoupled
- Oscillating stimulus → oscillating gel, but this doesn't necessarily → oscillating flow
- Adding anisotropy lets a reciprocal signal be converted to a non-reciprocal stroke
- Jellies can surf

with thanks to

Tom Montenegro-Johnson Warwick

Grae Worster Cambridge

more details can be found in

Webber, J. J. & Worster, M. G. J. Fluid Mech. 960:A37 (2023)

Webber, J. J., Etzold, M. A. & Worster, M. G. J. Fluid Mech. 960:A38 (2023)

Webber, J. J. & Worster, M. G. Phys. Rev. E 109:044602 (2024)

Webber, J. J. & Montenegro-Johnson, T. D. J. Fluid Mech. 1009:A38 (2025)

Webber, J. J. & Worster, M. G. Proc. Roy. Soc. A 481:20240721 (2025)

Webber, J. J. & Montenegro-Johnson, T. D. Phys. Rev. Res. 7:L032055 (2025)

Webber, J. J. & Montenegro-Johnson, T. D. Phys. Rev. Fluids (accepted) (2025)

LEVERHULME TRUST_____

