Buckling and swelling instabilities of super-absorbent gels

Joseph Webber with Grae Worster

Department of Applied Mathematics and Theoretical Physics University of Cambridge, UK

Squishy Journal Club, University of Oxford 28/11/2023

Natural Environment Research Council

Swelling of confined gels

- When water is introduced to a 'dry' gel subject to mechanical confinement, wrinkles can form
- Swelling produces horizontal compressive stresses relieved by buckles

- Some gels form wrinkles, some don't; what's the criterion?
- Patterns smooth in time (wavelength grows like $t^{1/2}$)
- In some cases, patterns disappear
- How do wrinkles grow?

Physical setup

 ϕ polymer volume fraction

 $\phi_0\,$ equilibrium (free swelling) polymer volume fraction

Poromechanical modelling

Webber & Worster and Webber, Etzold & Worster JFM, 2023

Displacement-strain relations

$$\mathbf{e} = rac{1}{2} ig[oldsymbol{
abla} oldsymbol{\xi} + oldsymbol{
abla} oldsymbol{\xi}^{\mathrm{T}} ig]$$

$$\mathbf{e} = \left[1 - \left(rac{\phi}{\phi_0}
ight)^{1/2}
ight]\mathbf{I} + oldsymbol{\epsilon}$$

Deviatoric strain tensor

$$oldsymbol{
abla} oldsymbol{\cdot} oldsymbol{\xi} = 2 \left[1 - \left(rac{\phi}{\phi_0}
ight)^{1/2}
ight]$$

- Start with the gel in a reference configuration where polymer fraction equals ϕ_0 everywhere
- Take displacements $\boldsymbol{\xi}$ relative to this state and derive the Cauchy strain tensor as usual
- **Key idea:** isotropic strains can be small, but linearise around deviatoric strains
- A gel, swollen to a given degree, is a linear elastic material with its own properties

Poromechanical modelling

Webber & Worster and Webber, Etzold & Worster JFM, 2023

Displacement-strain relations

$$\mathbf{e} = rac{1}{2} ig[oldsymbol{
abla} oldsymbol{\xi} + oldsymbol{
abla} oldsymbol{\xi}^{ ext{T}} ig]$$

$$\mathbf{e} = \left[1 - \left(rac{\phi}{\phi_0}
ight)^{1/2}
ight]\mathbf{I} + \mathbf{e}$$

Deviatoric strain tensor

 $oldsymbol{
abla} oldsymbol{\cdot} oldsymbol{\xi} = 2 \left[1 - \left(rac{\phi}{\phi_0}
ight)^{1/2}
ight]$

- Remain agnostic as to the specific elastic model
- Pressure comes from isotropic elasticity and hydrophilic interactions

Example: Hencky elasticity

$$\boldsymbol{\sigma}^{(e)} = \Lambda(\phi/\phi_0) \operatorname{tr}(\mathbf{H})\mathbf{I} + (M - \Lambda)(\phi/\phi_0)\mathbf{H} \qquad \mathbf{H} = \frac{1}{2} \ln\left(\mathbf{F}\mathbf{F}^{\mathrm{T}}\right)$$
$$\prod(\phi) = \left(\Lambda + \frac{M}{2}\right) \frac{\phi}{\phi_0} \ln\left(\frac{\phi}{\phi_0}\right) \qquad \mu_s(\phi) = \frac{M - \Lambda}{2} \left(\frac{\phi}{\phi_0}\right)^{2/3}$$

Poromechanical modelling

Webber & Worster and Webber, Etzold & Worster JFM, 2023

Displacement-strain relations

$$\mathbf{e} = rac{1}{2} ig[oldsymbol{
abla} oldsymbol{\xi} + oldsymbol{
abla} oldsymbol{\xi}^{\mathrm{T}} ig]$$

 $\mathbf{e} = \left[1 - \left(rac{\phi}{\phi_0}
ight)^{1/2}
ight]\mathbf{I} + oldsymbol{\epsilon}$

Deviatoric strain tensor

$$oldsymbol{
abla} oldsymbol{\cdot} oldsymbol{\xi} = 2 \left[1 - \left(rac{\phi}{\phi_0}
ight)^{1/2}
ight]$$

Confined swelling base state

- The interface immediately swells to its equilibrium polymer fraction
- Water diffuses into the bulk to swell the rest of the layer
- Final steady state reached with uniform polymer fraction $\Phi_1 = \phi_1/\phi_0$

$$\sigma_{zz} = -K(\Phi - 1) + 2\mu_s \epsilon_{zz} = -K(\Phi - 1) - 2\mu_s \epsilon_{xx}$$
 $e_{xx} = 1 - \Phi^{*1/2} = 1 - \Phi^{1/2} + \epsilon_{xx}$
 $K(\Phi_1 - 1) = 2\mu_s \left(\Phi^{*1/2} - \Phi_1^{1/2}
ight)$

Confined swelling base state

- At very early times, diffusion only penetrates a small depth into the gel layer, and so we can approximate it as infinite depth
- Here, there exists a similarity solution for polymer fraction

$$egin{aligned} \phi &= \phi^* \left[1 - \left(1 - rac{\phi_1}{\phi^*}
ight) rac{ ext{erfc}(-\chi)}{ ext{erfc}(-\lambda)}
ight] \ a(au) &= a^* \left[1 + 2\lambda \sqrt{\left(\Phi^* + \mathcal{M} \Phi^{*1/2}
ight) au}
ight] \ (au \ll 1) \end{aligned}$$

Time since introduction of water

Swelling instability

- First, consider the case where $\Phi \equiv \Phi_1$ and there are no polymer fraction gradients (i.e. the final steady state); seek linear unstable modes
- Perturb the displacement field with sinusoidal modes and get growth rates from the swelling equation
 - Cauchy's momentum equation
 - Swelling equation
 - No shear on base
 - No normal displacement on base
 - No shear on free surface
 - No normal stress on free surface
 - Continuity of pore pressure

$$= \mu_s/K$$

 $rac{\mathcal{M}s}{2lpha} \sinh{(2lpha)} + (\mathcal{M}+\Phi_1-1)\left(s+\mathcal{M}\Phi_1^{rac{1}{2}}lpha\sinh{(2lpha)}
ight) = 2\mathcal{M}\Phi_1^{rac{1}{2}}\left(\mathcal{M}+\Phi_1-1
ight)\sqrt{lpha^2+rac{s}{D}} imes \ \cosh^2{(lpha)} ext{tanh}\left(\sqrt{lpha^2+rac{s}{D}}
ight)$

+ no unstable incompressible modes – instability only grows *via* swelling!

Swelling instability

- Anchoring from the base stabilises long wavelength ripples
- Growth is faster with more compressive strain
- Criterion for instability is weaker with a greater shear modulus $\mathcal{M}=\mu_s/K$

The transient state

- There's an apparent peak in growth rates at a finite wavenumber
- Fast growth different mechanism
- Approach late-time limit
- Is this an elastic buckle?

The transient state

- There's an apparent peak in growth rates at a finite wavenumber
- Fast growth different mechanism
- Approach late-time limit
- Is this an elastic buckle?

A finite most unstable mode

- *If* the peak is physical, we expect that this is the wavenumber we'll see no ultraviolet catastrophe here
- Plotting the peak position at $\alpha = \alpha^*$, we see that the wavelength increases with time before the peak disappears, scaling with the thickness δ

Figure from Tanaka *et al.,* Phys Rev Lett **68**:2794-2798, 1987

What's the mechanism causing this – can it be captured by our theory?

Buckling instability

- View the base as an elastic incompressible material, bonded to a thin elastic swollen layer
- Classical plate theory gives a balance between stresses to select a finite wavenumber α^* for wrinkles $y = z/a(\tau)$

$$rac{E\delta^3}{12\left(1-
u^2
ight)}lpha^4 - 4\mathcal{M}\left(\Phi^{*1/2} - \Phi_1^{1/2}
ight)\deltalpha^2 = {egin{array}{c} ext{Interfacial polymer}\ ext{fraction gradient}\ \ -\left[\left(1 + \mathcal{M}\Phi^{*-1/2}
ight)\Phi_y + rac{2\mathcal{M}lpha}{ anh\left[lpha(1-\delta)
ight]}
ight]\cos\left(lpha x
ight).$$

• Look at the dominant balance at early times, when $\delta \ll 1$ alongside $\Phi_y \sim -1/\delta$

Buckling instability

Early-time limit

Healing of instabilities

• There is no longer a solution to the equation for buckling if the thickness of the swollen layer is above a critical value

$$\delta_c = rac{\Phi^* + \mathcal{M} \Phi^{*1/2}}{2\mathcal{M}} igg(1 - rac{\Phi_1}{\Phi^*}igg)$$

- Here, the effect of the base is too strong and buckling is suppressed
- Thus, we can no longer have a buckling instability
- If we swell to a low enough polymer fraction, we no longer see a swelling instability either, and the wrinkles on the surface 'heal'

Healing of instabilities

 $\Phi^*=2.75,\;\mathcal{M}=10\Rightarrow\Phi_1<\Phi_{
m crit}$

Time since introduction of water

Buckling and swelling instabilities of superabsorbent gels

Webber, J. J. & Worster, M. G. *Wrinkling instabilities of swelling hydrogels* — submitted to PRE

Webber, J. J. & Worster, M. G. A linear-elasticnonlinear-swelling theory for hydrogels. Part 1. Modelling of super-absorbent gels J. Fluid Mech. **960**:A37 (2023)

Webber, J. J., Etzold, M. A. & Worster, M. G. A linearelastic-nonlinear-swelling theory for hydrogels. Part 2. Displacement formulation J. Fluid Mech. 960:A38 (2023)

j.webber@damtp.cam.ac.uk

Natural Environment Research Council