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Modelling hydrogels

Formed of a hydrophilic polymer scaffold surrounded by adsorbed
water molecules

e can comprise >99% water by volume but remain solid
* behave elastically with low shear modulus

 swell or dry to extreme degrees when water is added or removed
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Hydrogels

Fully-nonlinear models

W = Wmix + Welastic

Energy density function with contributions
from mixing (entropy, electrostatic
interactions, temperature-dependence, ...)

and elasticity (of individual polymer chains).

Accurate, models large strains

Not analytically tractable, parameters hard to

determine

Flory & Rehner (1943a,b), Cai & Suo (2012), Bertrand
et al. (2016), Butler & Montenegro-Johnson (2022)

Fully-linear models
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 Based on linear poroelasticity,

interstitial flow via Darcy’s law. Treats

gel as a linear-elastic material.
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* Analytically tractable, clear physics,
‘macroscopic’ parameters

« Can'’t deal with large swelling strain

Biot (1941), Tanaka & Fillmore (1979), Doi
(2009)




Poromechanics

A geophysicist’s approach: separate contributions from stress into a ‘pore pressure’ and an

‘effective stress’

o= —pl+ o

Bulk pressure (or thermodynamic pressure) the isotropic stress exerted by a sample of gel; our

familiar concept of pressure

Pervadic pressure (or Darcy pressure, “pore” pressure) is the
pressure as would be measured by a transducer separated by a
partially-permeable membrane from the gel.

osmotic effects?
isotropic elasticity?

In soil science: p is the pore pressure, / _ |
P is the overburden pressure P — I generalised osmotic
In colloids: p is [related to] the — P + pressure

chemical potential, [1is the osmotic

pressure
permeability
p drives flows by Darcy’s law: TS
u=——Vp
relative fluid flux il
u=(1—¢)(ty — up) (dynamic) viscosity of fluid

Biot (1941) J. Appl. Phys. 12:155-164; Peppin et al. (2004) Phys. Fluids 17:053301



Poromechanics

Linear (Biot) poroelasticity specifies a linear-elastic constitutive relation linking strains to effective
stresses. Hydrogels swell a lot, with potentially large strains: linear is no good!

One way around this: use finite strain (nonlinear) elastic models for effective stress.
M — A

A
e.g. Hencky model o = qu tr (ln(FFT))I + In(FF™)
\. ./ assume linearity only in the deviatoric strain from some
il O fully-swollen reference state
./ \‘. P “linear-elastic materials with properties dependent on swelling state”
isotropic deviatoric

Biot (1941) J. Appl. Phys. 12:155-164; Tanaka et al. (1973) J. Chem Phys. §9:5151-5159; MacMinn et al. (2016) Phys. Rev. Appl. 5:044020



The linear-elastic-nonlinear-swelling model

Therefore, the deviatoric part of the effective stress tensor must depend linearly on the deviatoric
part of the Cauchy strain (the isotropic part could be huge)

1 T ¢\
e= 5[V + (VO = [1- (£) f1ven

isotropic strain
depends only on degree to
which gel is swollen

deviatoric strain
assumed small

This allows us to construct a stress tensor like usual

shear modulus depends
on swelling!

/ dry gels will probably be
O eoff — _H(¢)' =+ zlj’s(gb)e ’ stiffer ’
T

isotropic part must be (-) osmotic depends on swelling alone
pressure isotropic strains lead to isotropic stresses
since the isotropic part of the total - see the isotropic part of strain tensor
stress tensor is (-) the bulk

pressure physically intuitive result

JJW & Worster (2023) J. Fluid Mech. 960:A37



The linear-elastic-nonlinear-swelling model

o= —pl + o * Have an expression for stress in the gel, so conservation of
P=p+1I momentum links pressure gradients to deviatoric strains,

V.o=0 so Vp=-—VII(¢)+ 2V - [us(d)€]
. W,

N —1
N, 2 Ne W il / pervadic pressure gradients
- - | oppose osmotic ones
P VN | . | | |
isotropic . deviatoric * Since gradients in pervadic pressure drive flows, this allows us to
describe gel reconfiguration (when coupled with conservation of

polymer and water)

e= (Ve +(veT] = [1 - (f) N

. I +e iy <«—depends on swelling
%ﬂi-\vgbzvo(qbu) alongside u=- Lf) Vp
Oeff — —H(¢)| + 2Ms(§b)€ phase-averaged (gel and water) flux
u=(1-¢)(uw—up)
qg=(1—@)uw + gup O k() | O  4us(o) ( b )1/3
=L q- V=V + v
o P9VE { w |00 T3 %) V7

JJW & Worster (2023) J. Fluid Mech. 960:A37; JJW et al. (2023) J. Fluid Mech. 960:A38



Characterising a gel

8q§ 1/3
o (@168
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Shear modulus characterises the stiffness of a hydrogel and describes the initial elastic response
before water diffuses through the structure

Osmotic pressure characterises the affinity for water (‘desire’ to swell or deswell)

Permeability describes the resistance to viscous flow through the pore scaffold

| force on plate

b0 5

JJW & Worster (2023) J. Fluid Mech. 960:A37; JUW et al. (2023) J. Fluid Mech. 960:A38; JJW (2024) PhD thesis, U. Cambridge 1
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Insights from LENS modelling

Uniaxial problems are easy: shape set
by polymer conservation

A N £ N\ /\ 1+1 dimensional advection-diffusion
) < ) K ) ) equation

BC at gel-water interface set by
stress and pressure balance

curved interfaces

More complex geometries = hard!

Need to relate swelling state to
displacement to find how the shape
evolves

ViE = —3VV(¢/0) "’

T e —
T — ————

JJW & Worster (2023) J. Fluid Mech. 960:A37: JJW et al. (2023) J. Fluid Mech. 960:A38 differential drying



Overview 1. LENS modelling of gels

Osmosis - elastic stresses - equilibrium
swelling - transport of water - shape change
in swelling/drying - behaviour at interfaces -
characterising a gel

Temperature (representative values)

2. Freezing gels at low(-ish) temperatures 3. Building with thermo-responsive gels

Formation of pure ice - cryosuction - applying Heating gffgcts on swel.ling - heat ’Fransfer in
model to GelFrO - a 2D model - stress buildup gels - building pumps with collapsing tubes
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How do deformable porous media freeze?

TARMAC

SOFT FRUIT
HUMAN TISSUE
PLANTS

Water in pores
Soft, stretchy

matrix

(L/Lo)® =V /Vy ~ 1.09

e = (L — Ly)/Lg =~ 0.02
stresses must therefore scale like 0.02E

but, for a strawberry, E ~ 10° Pa yet the
fracture strength ~ 2 x 104 Pa
An et al. Food Res. Int. 169:112787 (2023)

Why does freezing cause damage?

- Thermal expansion?
volume ~9 er than that
of liquid water

- Freeze-thaw weathering?
repeated expansion and
contraction = damage

- Microscale damage? cells
burst when frozen and their
membranes are permanently
destroyed



How do deformable porous media freeze?

pressure Pressure is raised inside the pores by capillarity, so the
ice-entry temperature is modified by the Gibbs-Thompson
relation
>¢ f .
- Trm=T. |1 YK surface tension and
1 atm Pice L average pore
s / ’\ curvature
(neither actually equilibrium freezing -
derived this.. temperature (~273 K) specific latent heat of

fusion

>
0°C temperature

At the boundary, temperature given by Clausius-Clapeyron relation:

equals (-) bulk pressure

Ty, =T Tyt + 0 » 10+ Pay Dgel — Datin
Beearere—5 = 7—‘19@/0&?# Flger =&~
m m ice ater
— —11(¢)"
. (..ditto) assume no overburden stress - o - = —pPatm

Worster (2000) in Perspectives in Fluid Dynamics Cambridge Uni. Press; Style et al. (2023) J. Glaciol. 69:1091-1096

pure ice
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How does ice grow from a hydrogel?

HYDROGEL

T=Tc<Ty

Clausius-Clapeyron relation: temperature depends on how dry the gel is

H(¢) BC on polymer fraction BC on temperature
TL — Tm ]‘ o ¢ E Temperature sets the amount of How dry the gel is sets the
Pwater drying temperature

Stefan condition: growing ice uses up energy

Quasi-steady thermal problem implies T is linear (in ice),

da oT da K (Twm—Tc)—Tnll(9)/pwater L

_|_
Piceﬁa = = [ICE] )

dat Pice L a(t)
Mass conservation: to form ice, water must be drawn from the hydrogel
da pwaterk ap

picea = —PwaterW * T = 10 O

Darcy’s law u = -(k/u,) do/0z



How does ice grow from a hydrogel?

The gel problem

To describe the response of a gel, there are three material

The thermal problem
parameters:

or O*T  [intheice 0<z<a(t
R inthe gela(t)<z<h 11(¢) ps (@) k(o)

ot 022
osmotic pressure shear modulus permeability

T =Tc atz=0 /.
0T /0z=0 atz=h //
o9 O 'a/%_

¢
I I = = —|D —_— =0 H¢:pwaerETm_TL
whilst at the interface z = a(1), ot Ep [ (@) 5z 5, (#) ter £( )
T =T (1 — 1)/ pwate: L] inthe gel a(t) <z<h atz=nh at z = a(t)
da oT ™" _ _
piceca = — ICE Growth rate of ice governed by mass balance at the interface,

da _ D(¢) 8¢

dt ¢ 0z




The steady state

gel dries > freezing temperaturedrops > T, =T, > freezing stops

HYDROGEL

In this steady state...
- Polymer fraction is uniform (otherwise, flow from wet to dry)

- Temperature is uniformly equal to the liquidus value

h I1 ( h¢0 ) — pwaterE(Tm - TC)

h—a

New polymer fraction comes from mass conservation
Qoo (swollen value ¢,) [
0 / ddz = doh

This is the basis for Gel-freezing osmometry (GelFrO)

—teee Feng et al. J. Mech. Phys. Solids 201:106166 (2025)




The steady state

N 1 i = . .
HYDROGEL
0.8 I T
ZVhy;he plateau?“ ; =12 n
= ound water - usually , T 2.6 x 10=3 of
\8 0.6 measured with Raman K (IIp = 2.6 X pL)
S spectroscopy!
I p py 4 o H _ HO ¢_0 0
i (ITy =~ 4.8 x 1073pL)
h ——  [1/1] Padé approximation
0
—0.05 —-0.04 —-0.03 —-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

(TC - Tm)/Tm

103pL ¢ — ¢o
¢ 1—/(6.6¢9)

I1(¢) =

y ICE | First result: freezing gels lets us probe their internal structure, including
some microscopic properties that are experimentally hard to find!



How does ice lens growth damage gels?

Freezing leads to stress buildup in the dried gel that remains; in our 1D example, this stress is
uniform (eventually) through the gel. In 2D, however, the picture is more complicated

Glass I |

Silanized |"1terface |

lce
ontrol dh S|on
No | ﬂpb.zen ’t 9“ l

N
‘il Ol m'

(i Skt 4"' ,,‘lhilqrtb ﬁl

Glass mterface

Temp. gradient, g —»



Forming ice ‘lenses’

Freezing leads to stress buildup in the dried gel that remains. In our 1D example, this stress is

eventually uniform. In 2D, the picture is more complicated:

2. interstitial fluid is driven

—— {0 MoOre swollen to less

swollen regions

1. cryosuction
occurs to form

ice, compressing
the gel vertically
to a greater
extent further to
the left

T

I
c~

=T

3. reswelling
raises the
liquidus
temperature;
more cryosuction
OCCUrs

This feedback cycle only breaks when reswelling can’t occur any longer. What's missing?

drying (<) » osmotic stress (=) » pore pressure (7) > flow (¢)

OR drying (<) 2 elastic stress (<) = pore pressure (v) = flow () ?



Modelling displacement

Gradients in pore pressure balance those in osmotic pressures and deviatoric (shearing) stress

Vp+ VII =2V - [us(P)e] + slendernessh/L «1 + displacement from equilibrium & = (€ n)

\ \ / Vit = —3VV2(¢/do)

% (2 )Mﬁ%+ (£ )_1/28’7 %MD 2 )+ 202 )/] o4

ot b0 ot Oz b0 ot 0z  w 0¢ b0 522
P=p+Il
* h
¢= 5 g (b -0 e~ [t [ (oo -]}

A

/ |

« NO-SLIP FREE-SLIP »
parabolic horizontal stretched out uniform
0 02 04 06 08 1 1.2 displacement horizontal displacement 0 02 04 06 08 1 1.2

z/L z/L



Dynamics of lens growth

=102 "=5x10"% /o .
Two phases of gel deformation:

Contraction when the gel deswells,
driving fluid to the ice and shrinking
back in response

A A A A A A A

A <t
b =
VA
<¥
» =3
Ve =
p <
-
il
.

Squeezing when the growing ice
compresses the gel and ‘extrudes’ it
horizontally to the right
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Stresses and strains
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Understanding and controlling damage

How can we minimise damage, then, to soft materials when freezing them?

Change the temperature:
dependent on whether we want to freeze water in situ or preserve cell
structures, choose a temperature either side of the ice-entry value

Change the confinement:
materials bound to stiff substrates build up more damage

Change the rate:
suction can cause damage, and our model quantifies the interstitial flow
velocities as a function of undercooling

IC T
a =~ \/p_E(Tm_TC) (1+COST)t




Overview

Temperature (representative values)

1. LENS modelling of gels

Osmosis - elastic stresses - equilibrium
swelling - transport of water - shape change
in swelling/drying - behaviour at interfaces -
characterising a gel
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2. Freezing gels at low(-ish) temperatures

Formation of pure ice - cryosuction - applying
model to GelFrO - a 2D model - stress buildup
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3. Building with thermo-responsive gels

Heating effects on swelling - heat transfer in
gels - building pumps with collapsing tubes
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Thermo-responsive gels

Some gels, like many based on poly(N-isopropylacrylamide) (pNIPAM) undergo a transition at a
critical temperature called the Lower Critical Solution Temperature (LCST)

Stoychev et al. (2011) Soft Matter 7:3277-3279

Qualitatively, it appears that there is a new equilibrium
(dry) polymer state above the LCST, with transition

between the two states slow, mediated by diffusion of
water

Bo = {¢oo T <Tc

¢Ooo T > TC
W= 52 [or (Fa ) —3-+ 2logd] + 1o | 2= log(1 = )+ (6, T)(1 — 9
: : . : ow :
Solving the implicit relation — =0 gives the
9¢ $=¢o

equilibrium polymer fraction as a function of temperature

if we know the interaction parameter’s value




Thermo-responsive gels

Take a simple functional form x(¢, T) = 4o + AiT + (B + B1T)¢ + O(T?, ¢°)

.we're skipping out some significant and important behaviour here, however.

Butler & Montenegro-Johnson (2022) J. Fluid Mech. 947:A11



Thermo-responsive gels

Hirotsu et al. (1987) J. Chem. Phys. 87:1392-1395 If the Sa.me parame.ter set is US.ed to generate a
1.0 generalised osmotic pressure (in the LENS
formalism), we see the same rapid switch in
equilibrium values as the temperature increases

Phenomenologically, it suffices to take

¢ — ¢o(T)
$o(T')

II(¢) = Il

Big question: Does this work?

® (normalised polymer fraction)

LENS invalid at a
sharp drying front

EN

T < T
motivating our choice ¢ = {zgo T~ Tg

JJW & Montenegro-Johnson (2025) J. Fluid Mech. 1009:A38



Heat transfer in thermo-responsive gels

External supply of heat

Heat generation due to viscous flows
Heat transfer by advection

Heat transfer by diffusion

Energy used in swelling or drying

gRrONR

External heating  Thermal diffusivity Permeability

\ »
oT R 2 1
E—FQ'VT: —C—|—IiV2T—|— ’|Vp|2+g
Density Sieeg,:lc Fluid viscosity
capacity

Usually, however, reconfiguration is ‘slow’ on the timescale of heat transfer by diffusion (Lewis
number -thermal diffusivity over compositional diffusivity - is large), and so we can approximate

oT 5
-~ T
Yy AV

JJW & Montenegro-Johnson (2025) J. Fluid Mech. 1009:A38



Tubes of responsive gel
o T

alI I .................................

ag Ibo(z, t) }

L .z

Hot /o
Shrunken tube, narrow lumen Cold T — T — AT

T =Tc+ AT Relaxed tube, wide lumen

1. How does a heat pulse travel (symmetrically) outwards in time?
2. What happens to the shape of the tube as the pulse passes?

3. Where does the water go? How much is driven out radially, squeezed through the lumen, or
transported along the gel?

JJW & Montenegro-Johnson (2025) J. Fluid Mech. 1009:A38



Heat transfer problem

1. is easy (if we ‘spherical cow’ the problem a little...)

The thermal diffusivity of pNIPAM gels is close to that of water, so we can
treat the heat transfer problem as occurring in a single infinite domain with
only variation in the z direction

2.1

Kgel ~ 1.8 X 107" m?s~ Kwater =~ 1.43 x 107" m?s

Tél et al. (2014) Int. J. Therm. Sci. 85:47-53 at latm and 298 K

z
T — T~ = AT |2erfc —1
¢ [ (2\/5315) ]

so there is a ‘front’ at Zgo = 2erfc™! (%)x/ﬁ behind which the gel is
deswollen

JJW & Montenegro-Johnson (2025) J. Fluid Mech. 1009:A38

Randall Munroe xkcd 793

YOURE TRYING To PREDICT THE BEHAVIOR
OF ? JUST MODEL
TAS A - AND THEN ADD
SOME. SECONDARY TERMS To ACCOUNT RR

\
EASY, RGHT?
)
50, WHY DOES NEED
A WHOLE. TOURNAL, ANYWAY?

LIBERAL-ARTS MAJORS MAY BE ANNOYING SOMETIMES,
BUT THERES NOTHNVG MORE OBNOXIOUS THAN
B\ PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.



()d) _ l ()d)

Deformation of the tube vorok

ll/

()
lD(lb T)—

+
éo(T) 3

¢ = ¢o(T) on boundaries

2. Shape change: is a bit harder

[y(T)¢ i(i
oo

slenderness
assumption:
aspect ratio small

¢ = ¢1(2, ) + 2pa(r; 2, t)

then separate variables

To attack this problem, we assume that the tube is long and thin. Balance stresses on its interface

with water to find that the gel deswells to its equilibrium value on these surfaces

Fully-deswollen (inside and out)

/

%

)|

7 =0.025

ﬁl
Il
e

7=0.05 D

\ / 1

Fully-swollen (pulse has
not yet passed) R 0 . -

0 02 04 06 08 1.0 O 02 04 06 08 1.0
Z Z

JJW & Montenegro-Johnson (2025) J. Fluid Mech. 1009:A38

: 1

0 02 04 06 08 1.0

Z




Deformation of the tube

The inside and the outside instantaneously deswell, but the interior takes some time - it's slower
for a thicker tube. This leads to ‘smoother’ profiles for thick tubes.

2.0 | | The ‘smoothed step’ profile suggests that we can nicely
I . approximate the tube with a hyperbolic tangent,
l 0o — 1
D LorF _ ¢ =0.1 | ¢ — inner radius | P17~ Poo — {1+ tanh [A(€)(Z = Z0)]}
N I 14k — =025 outer radius | Dry polymer fraction (scaled)
| —¢=05 |
L2 — iz 8;5 , | E 'sharpness’ of front scales like 1-¢
1.0 L l = This has the corollary
—0.10 -0.05 0 005 010 3 of quantifying how
/— 7/ much faster the
response time is for

Interior (middle of tube wall) polymer

fraction (scaled) thinner walls

JJW & Montenegro-Johnson (2025) J. Fluid Mech. 1009:A38



{=0.25 10 {=0.75

The fluid pulse o —
R 06} v = 0.8
3. Fluid flows arise in three places: 32 ’ :;4; = 32

VA

« Radial fluxes from the tube walls into the surroundings as they deswell - u, «x 8¢/0r

« Axial fluxes through the gel from more swollen to less swollen regions (probably small)

« Axial fluxes arising from conservation of fluid: the tube collapses and squeezes water along its
length

; sl
HJTJ Lo

JJW & Montenegro-Johnson (2025) J. Fluid Mech. 1009:A38
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more details can be found in

Webber, J. J. & Worster, M. G. J. Fluid Mech. 960:A37 (2023)

Webber, J. J., Etzold, M. A. & Worster, M. G. J. Fluid Mech. 960:A38 (2023)
Webber, J. J. & Worster, M. G. Phys. Rev. E 109:044602 (2024)

Webber, J. J. & Montenegro-Johnson, T. D. J. Fluid Mech. 1009:A38 (2025)
Webber, J. J. & Worster, M. G. Proc. Roy. Soc. A 481:20240721 (2025)
Webber, J. J. & Montenegro-Johnson, T. D. Phys. Rev. Res. 7:.032055 (2025) LEVERHULME
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