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When do gels wrinkle?

* Wrinkling and buckling is observed in a number of different contexts, and not just
in soft gels.

* Horizontal compressive stresses are relieved by the formation of surface buckles
and wrinkles

* In general:
« Patterns smooth out in time
(1 ~ t1/2 Tanaka et al. (1992))
e Start as wrinkles and then
crease or fold.

Reproduced
from Tanaka et

al., Nature * Conditions for the onset of
e instability are well-studied

Time increases
fromatog



LENS theory for hydrogels

Webber & Worster (2023) Webber, Etzold & Worster (2023)
A linear-elastic-nonlinear-swelling theory for hydrogels. A linear-elastic-nonlinear-swelling theory for hydrogels.
Part 1. Modelling of super-absorbent gels (J Fluid Mech) Part 2. Displacement formulation (J Fluid Mech)

* Existing investigations use fully-nonlinear energy minimisation approaches but we
use a linear-elastic-nonlinear-swelling approach.

Deviatoric strain
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Setup for linear stability analysis

* Gel of uniform polymer fraction ®*, depth a* held between horizontal confines and
brought into contact with water.

* Slowly swells to uniform polymer fraction ®; and thickness a4, starting at the
interface and propagating through.

* Perturb the interface with a sinusoidal displacement and seek the growth rate s as
a function of the wavenumber «a.

/g\ /f;\ No solutions where V -
Pl=mx| P & = 0 permitted - all
f;, ;’; involve swelling or
\p’/ \p’/ drying.

z = a(t) + enestcos(ax)




Boundary conditions at the interface

 On the lower surface:
* No interstitial flow (p' = 0)
* No normal displacement (n = 0)
* No tangential stress (¢' = 0)

 On the upper surface:
* Continuity of normal stress

u us\
UZZ=O=>(¢1/2—?S)a€+(¢1/2+?5)n =0

« Continuity of tangential stress
us , [u
Oy =O:ES§ —[ES+2(CI>—1)]an =0

« Continuity of pervadic pressure
Assume that p = 0 in the water
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Boundary conditions at the interface

On the lower surface:

No interstitial flow (p' = 0)

N
LN
on i (M + 1/2) [%Sinh (20) + a(M + ®; — 1) (3 + M®!asinh (2a))} =
* G 1/4 9 2 5@/
2MP) "a(M + &1 — 1) cosh” (o) tanh (\/oz + M+1<I>}/2) X
G \/(M+<I>}/2) (s + 2% (M +2))a?)

« Continuity of pervadic pressure

LIY A

Assume that p = 0 in the water

P+
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Uniformly-swollen gels

Higher polymer fractions go

wavenumbers due to anchoring
from the base of the gel

unstable at smaller wavenumbers For short

wavelengths,

S ~ q?

Stabilisation at low Stable at all
Growth rate wavenumbers if

increases with @ d; < gy = (3+V5)/2.




Effect of the transient state

Growth of wrinkles is driven by swelling: scaling vertical displacements with 7, the
vertical interstitial velocity u ~ 7s.

Darcy’s law gives u ~ dp/0dz thus s ~ p/L, where L is the vertical lengthscale,
scaling like 1/a.

Interfacial boundary condition on pervadic pressure: p/L increases in magnitude as
o' - —0
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Rapid wrinkling at early times

At early times, there is a most rapid growth at a finite wavenumber.

« Can we match up with the behaviour seen in experiments? Solve the uniformly-
swollen problem with the pervadic pressure boundary condition and get a good

approximation to the full problem.
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Healing of wrinkles

* Some experiments show a complete healing of wrinkles; from an initially unstable
configuration, a stable steady state results.

* This can be explained using our model for wrinkle formation; the transient state
destabilises the gel and its effects ease off as time progresses. Start with a ®* >

Dt = (3 + \/g)/Z and pick parameters such that ®; < ® .
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Conclusions

 Taking a model that linearises around small deviatoric strains but allows for
arbitrarily large isotropic (swelling) strains allows us to model the wrinkling
instability in compressed gels.

* |t becomes clear that this instability is swelling-driven and we can derive growth
rates as a function of material properties and wavenumber.

 The transient swelling state destabilises wrinkle formation, an effect seen most
clearly at early times when a finite most unstable mode appears. Our model
predicts that the wavenumber of this mode decreases like t 71/2, as seen in
experiments.

 The model also explains the healing behaviour seen in existing studies, where
wrinkles form, smooth (by the behaviour described above) and then disappear.
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