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When do gels wrinkle?

• Wrinkling and buckling is observed in a number of different contexts, and not just 
in soft gels.
.

• Horizontal compressive stresses are relieved by the formation of surface buckles 
and wrinkles

Reproduced 
from Tanaka et 

al., Nature 
(1987)

.

Time increases 
from a to g

• In general:
• Patterns smooth out in time 

(𝜆 ∼ 𝑡1/2, Tanaka et al. (1992))
• Start as wrinkles and then 

crease or fold.
• .

• Conditions for the onset of 
instability are well-studied



LENS theory for hydrogels

• Existing investigations use fully-nonlinear energy minimisation approaches but we 
use a linear-elastic-nonlinear-swelling approach.
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Setup for linear stability analysis

• Gel of uniform polymer fraction Φ∗, depth 𝑎∗ held between horizontal confines and 
brought into contact with water.

• .

• Slowly swells to uniform polymer fraction Φ1 and thickness 𝑎1, starting at the 
interface and propagating through.

• .

• Perturb the interface with a sinusoidal displacement and seek the growth rate 𝑠 as 
a function of the wavenumber 𝛼.
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No solutions where 𝜵 ⋅
𝝃 = 0 permitted – all 
involve swelling or 

drying.



Boundary conditions at the interface

• On the lower surface:
• No interstitial flow (𝑝′ = 0)
• No normal displacement (𝜂 = 0)
• No tangential stress (𝜉′ = 0)
• .

• On the upper surface:
• Continuity of normal stress
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Uniformly-swollen gels

        

 

   

   

   

   

   

    
   

   

 

Stabilisation at low 
wavenumbers due to anchoring 

from the base of the gel

Higher polymer fractions go 
unstable at smaller wavenumbers

Growth rate 
increases with Φ

For short 
wavelengths, 

𝑠 ∼ 𝛼2

Stable at all 
wavenumbers if 

Φ1 < Φ𝑐𝑟𝑖𝑡 = Τ3 + 5 2.



Effect of the transient state

• Growth of wrinkles is driven by swelling: scaling vertical displacements with ҧ𝜂, the 
vertical interstitial velocity ത𝑢 ∼ ҧ𝜂𝑠.

• .

• Darcy’s law gives ത𝑢 ∼ 𝜕𝑝/𝜕𝑧 thus ҧ𝜂𝑠 ∼ ҧ𝑝/𝐿, where 𝐿 is the vertical lengthscale, 
scaling like 1/𝛼. 

• .

• Interfacial boundary condition on pervadic pressure: ҧ𝑝/𝐿 increases in magnitude as 
Φ′ → −∞

          

 

    

     

         

   

  
 

   

   

          
 

   

 



Rapid wrinkling at early times

• At early times, there is a most rapid growth at a finite wavenumber.

• Can we match up with the behaviour seen in experiments? Solve the uniformly-
swollen problem with the pervadic pressure boundary condition and get a good 
approximation to the full problem.

                   
 

 

  

      

  
  

 

 

 

 

  



                 
    

   

 

  

   

Healing of wrinkles

• Some experiments show a complete healing of wrinkles; from an initially unstable 
configuration, a stable steady state results.

• This can be explained using our model for wrinkle formation; the transient state 
destabilises the gel and its effects ease off as time progresses. Start with a Φ∗ >

Φcrit = Τ3 + 5 2 and pick parameters such that Φ1 < Φcrit.

                      

                   

            

 

 

 

 

  



Conclusions

• Taking a model that linearises around small deviatoric strains but allows for 
arbitrarily large isotropic (swelling) strains allows us to model the wrinkling 
instability in compressed gels.

• .

• It becomes clear that this instability is swelling-driven and we can derive growth 
rates as a function of material properties and wavenumber.

• .

• The transient swelling state destabilises wrinkle formation, an effect seen most 
clearly at early times when a finite most unstable mode appears. Our model 

predicts that the wavenumber of this mode decreases like 𝑡− Τ1 2, as seen in 
experiments. 

• .

• The model also explains the healing behaviour seen in existing studies, where 
wrinkles form, smooth (by the behaviour described above) and then disappear.
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