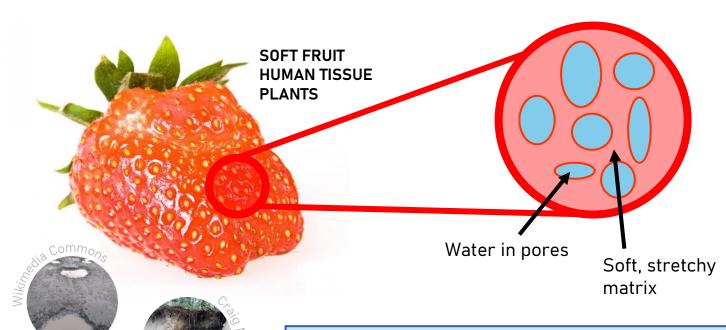
Getting stressed about frozen gels

Joseph Webber¹ and Grae Worster²

- ¹ Mathematics Institute, University of Warwick
- ² DAMTP, University of Cambridge

based on Webber & Worster 'Cryosuction and freezing hydrogels' Proc. Roy. Soc. A 481 (2025)

How do deformable porous media freeze?



TARMAC

SOIL

 $(L/L_0)^3 = V/V_0 \approx 1.09$

$$\epsilon = (L-L_0)/L_0 pprox 0.02$$

stresses must therefore scale like 0.02E

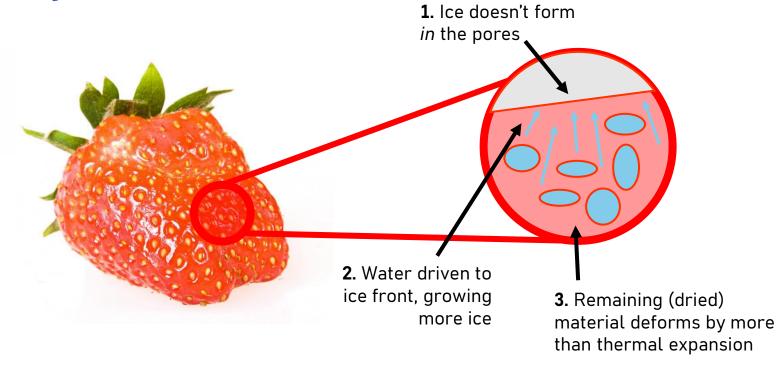
but, for a strawberry, $E \sim 10^5$ Pa yet the fracture strength $\sim 2 \times 10^4$ Pa

An et al. Food Res. Int. 169:112787 (2023)

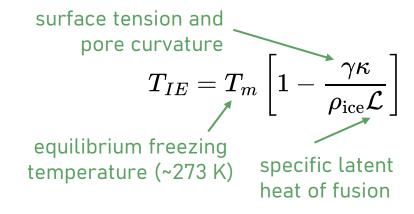
Why does freezing cause damage?

- Thermal expansion? ice has a volume ~9% greater than that of liquid water
 - Freeze-thaw weathering?
 repeated expansion and
 contraction = damage
 - Microscale damage? cells burst when frozen and their membranes are permanently destroyed

Cryosuction

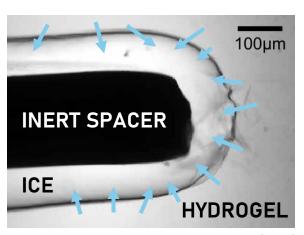


Freezing temperature lowered due to capillarity in pores



- Ice growth and material-ice boundary conditions
- Deformation of the remaining material
- Flow of water due to cryosuction

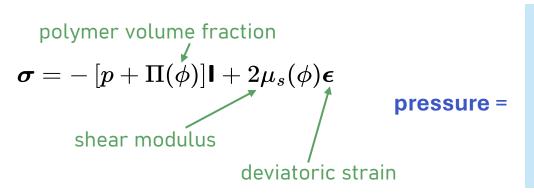
Use hydrogels as a proxy material: tuneable and can 'see inside'



Yang et al. Sci. Adv. 10:eado7750 (2024)

How does ice grow from a hydrogel?

Stresses in the hydrogel modify the freezing point, but we must quantify these stresses



pervadic pressure

Peppin *et al.* Phys. Rev. E 17:053301 (2005)

≈ pore pressure, chemical potential

"the pressure of the water inside the pores"

JJW & Worster J. Fluid Mech. 960:A37 (2023)

isotropic elasticity + osmotic pressure

= generalised osmotic pressure $\Pi(\phi)$ depends only on amount of swelling

"the pressure acting to close stretched pores"

"the pressure arising from how hydrophilic a gel is"

Freezing (liquidus) temperature given by the Clausius-Clapeyron relation

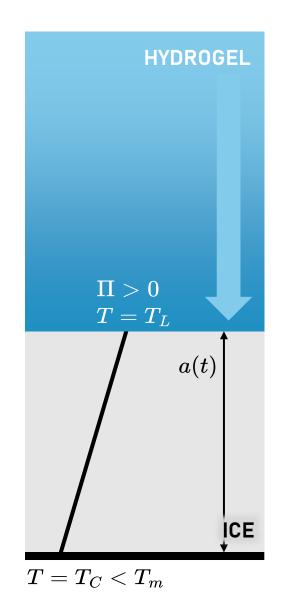
liquidus temperature
$$\mathcal{L} \frac{T_L - T_m}{T_m} = \frac{m{n} \cdot m{\sigma} \cdot m{n} + p_{ ext{atm}}}{
ho_{ ext{ice}}} + \frac{p_{ ext{gel}} - p_{ ext{atm}}}{
ho_{ ext{water}}}$$

$$T_L = T_m \left[1 - rac{\Pi(\phi)}{
ho_{ ext{water}} \mathcal{L}}
ight]$$

specific latent heat of fusion

"large osmotic pressure lowers the freezing temperature"

How does ice grow from a hydrogel?



Clausius-Clapeyron relation: temperature depends on how dry the gel is

$$T_L = T_m \left[1 - rac{\Pi(\phi)}{
ho_{\mathrm{water}} \mathcal{L}}
ight]$$
 BC on polymer fraction Temperature sets the amount of drying

BC on temperature

How dry the gel is sets the temperature

Stefan condition: growing ice uses up energy

$$ho_{
m ice} \mathcal{L} rac{{
m d}a}{{
m d}t} = -igg[\mathcal{K} rac{\partial T}{\partial z}igg]_-^+$$

$$ho_{
m ice} \mathcal{L} rac{{
m d}a}{{
m d}t} = -igg[\mathcal{K} rac{\partial T}{\partial z} igg]^+ \qquad rac{{
m d}a}{{
m d}t} = rac{\mathcal{K}}{
ho_{
m ice} \mathcal{L}} rac{(T_m - T_C) - T_m \Pi(\phi)/
ho_{
m water} \mathcal{L}}{a(t)}$$

Quasi-steady thermal problem implies T is linear (in ice),

Mass conservation: to form ice, water must be drawn from the hydrogel

$$ho_{
m ice}rac{{
m d}a}{{
m d}t}=-
ho_{
m water}oldsymbol{u}oldsymbol{\cdot}oldsymbol{n}=rac{
ho_{
m water}k}{\mu_l}rac{\partial p}{\partial z}$$

Darcy's law u = -(k/μ_l) $\partial p/\partial z$

How does ice grow from a hydrogel?

Clausius-Clape

The thermal problem

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial z^2} \quad \begin{cases} \text{in the ice } 0 < z < a(t) \\ \text{in the gel } a(t) < z < h \end{cases}$$

$$T=T_C$$
 at z = 0

$$\partial T/\partial z=0$$
 at z = h

whilst at the interface z = a(t).

$$T = T_m \left[1 - \Pi(\phi)/
ho_{
m water} \mathcal{L}
ight]$$

$$ho_{
m ice} \mathcal{L} rac{{
m d}a}{{
m d}t} = -igg[\mathcal{K} rac{\partial T}{\partial z}igg]_-^+$$

$$ho_{
m ice} rac{{
m d}a}{{
m d}t} = -
ho_{
m w}$$

The gel problem

JJW & Worster J. Fluid Mech. 960:A37 (2023)

To describe the response of a gel, there are three material parameters:

$$\Pi(\phi)$$
 $\mu_s(\phi)$ $k(\phi)$ osmotic pressure shear modulus permeability

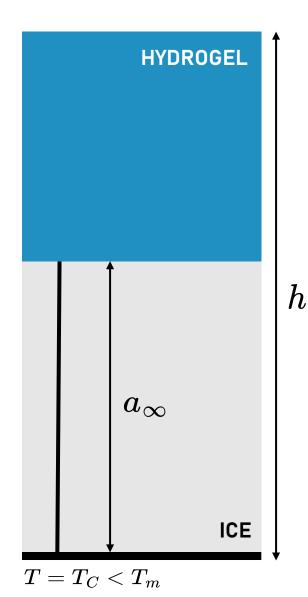
$$rac{\partial \phi}{\partial t} = rac{\partial}{\partial z} iggl[D(\phi) rac{\partial \phi}{\partial z} iggr] \qquad rac{\partial \phi}{\partial z} = 0 \qquad \Pi(\phi) =
ho_{ ext{water}} \mathcal{L}(T_m - T_L)$$

in the gel a(t) < z < h at z = h at z = a(t)

Growth rate of ice governed by mass balance at the interface,

$$rac{\mathrm{d}a}{\mathrm{d}t} = -rac{D(\phi)}{\phi}rac{\partial\phi}{\partial z}$$

The steady state



gel dries \rightarrow freezing temperature drops \rightarrow $T_L = T_C \rightarrow$ freezing stops In this steady state...

- Polymer fraction is uniform (otherwise, flow from wet to dry)
- Temperature is uniformly equal to the liquidus value

$$\Pi\left(rac{h\phi_0}{h-a}
ight) =
ho_{\mathrm{water}} \mathcal{L}(T_m-T_C)$$

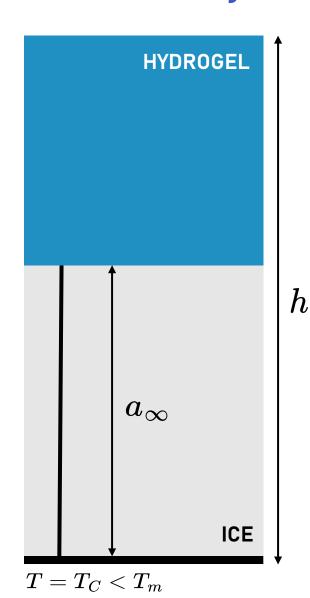
New polymer fraction comes from mass conservation (swollen value ϕ_0) $\int_a^h \phi \, \mathrm{d}x \equiv \phi_0 h$

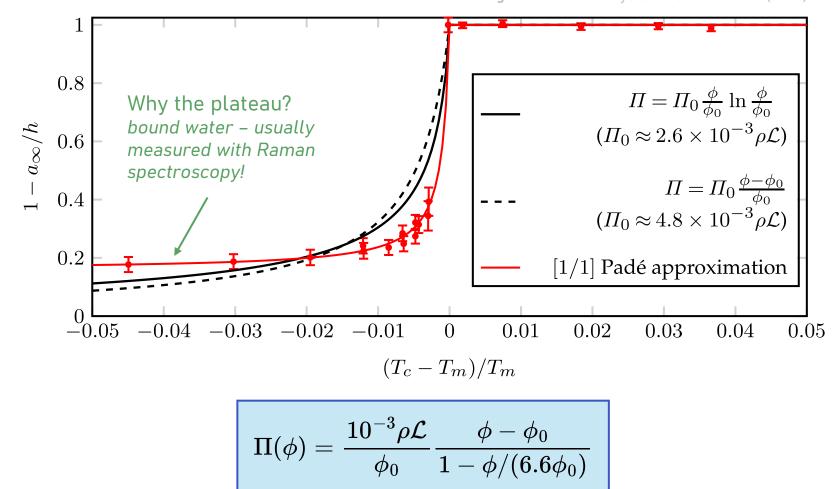
This is the basis for Gel-freezing osmometry (GelFrO)

Feng et al. J. Mech. Phys. Solids 201:106166 (2025)

The steady state

data from Feng et al. J. Mech. Phys. Solids 201:106166 (2025)

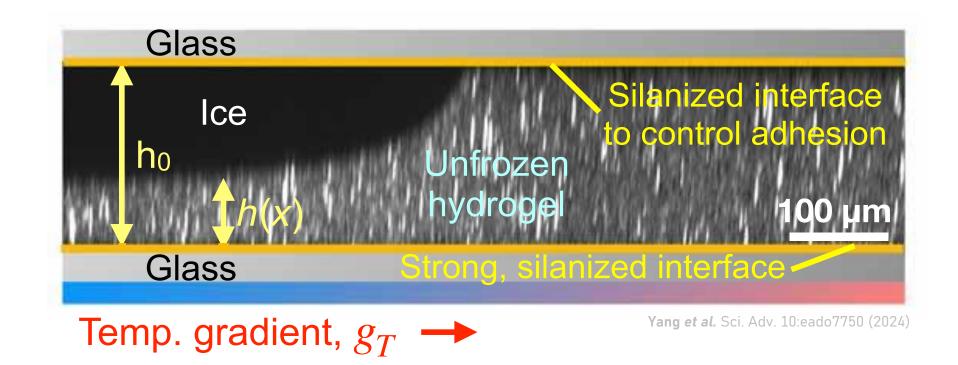




First result: freezing gels lets us probe their internal structure, including some microscopic properties that are experimentally hard to find!

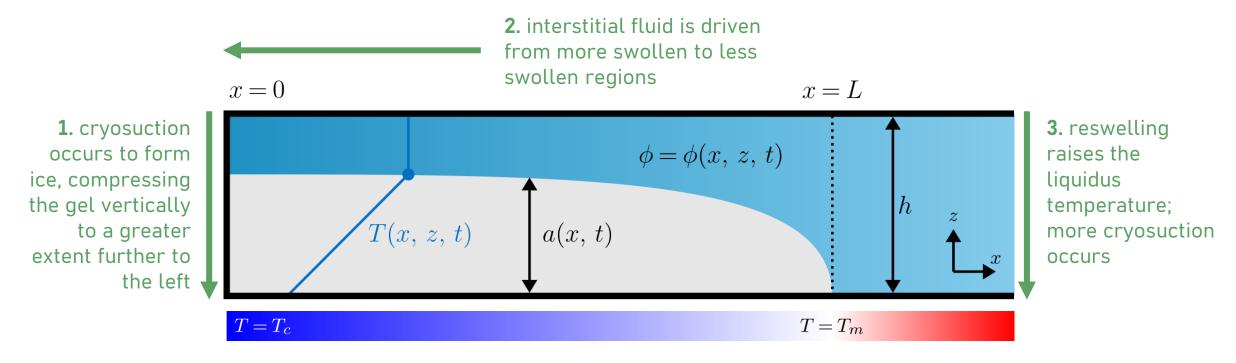
How does ice lens growth damage gels?

Freezing leads to stress buildup in the dried gel that remains; in our 1D example, this stress is uniform (eventually) through the gel. In 2D, however, the picture is more complicated



Forming ice 'lenses'

Freezing leads to stress buildup in the dried gel that remains. In our 1D example, this stress is eventually uniform. In 2D, the picture is more complicated:



This feedback cycle only breaks when reswelling can't occur any longer. What's missing? drying $(\kappa) \rightarrow$ osmotic stress $(\kappa) \rightarrow$ pore pressure $(7) \rightarrow$ flow (\leftarrow)

OR drying $(\land) \rightarrow$ elastic stress $(\land) \rightarrow$ pore pressure $(\lor) \rightarrow$ flow (\rightarrow) ?

Modelling displacement

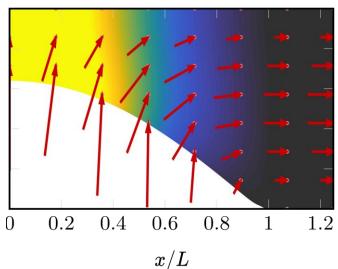
Gradients in pore pressure balance those in osmotic pressures and deviatoric (shearing) stress

$$\nabla p + \nabla \Pi = 2 \nabla \cdot \left[\mu_s(\phi) \underline{\epsilon} \right] + \text{ slenderness } h/L \ll 1 + \text{ displacement from equilibrium } \underline{\xi} = (\xi, \eta) \\ \nabla^4 \xi = -3 \nabla \nabla^2 (\phi/\phi_0)^{1/3} \\ \frac{\partial \phi}{\partial t} + \left(\frac{\phi}{\phi_0} \right)^{-1/2} \frac{\partial \xi}{\partial t} \frac{\partial \phi}{\partial x} + \left(\frac{\phi}{\phi_0} \right)^{-1/2} \frac{\partial \eta}{\partial t} \frac{\partial \phi}{\partial z} = \frac{k(\phi)}{\mu_l} \frac{\partial}{\partial \phi} \left[\Pi(\phi) + 2\mu_s(\phi) \left(\frac{\phi}{\phi_0} \right)^{1/2} \right] \frac{\partial^2 \phi}{\partial z^2}$$

$$P = p + \prod$$

$$\downarrow$$

$$\xi = -\frac{1}{2\mu_s} \frac{\partial P}{\partial x} (h - z)(z - a)$$



couple with a quasi-steady temperature profile (heat diffuses faster than water)

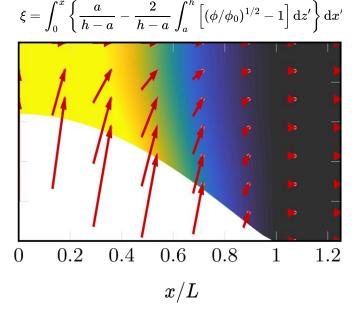
make a choice on displacement BCs

← NO-SLIP

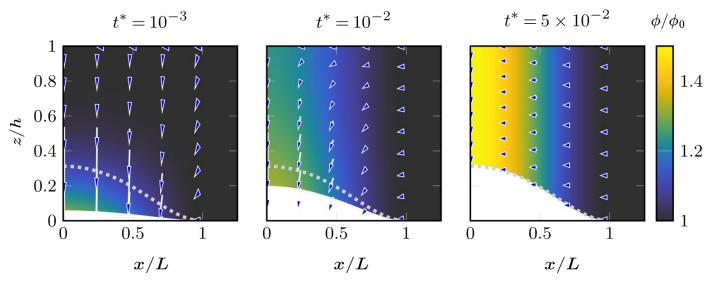
parabolic horizontal displacement

FREE-SLIP →

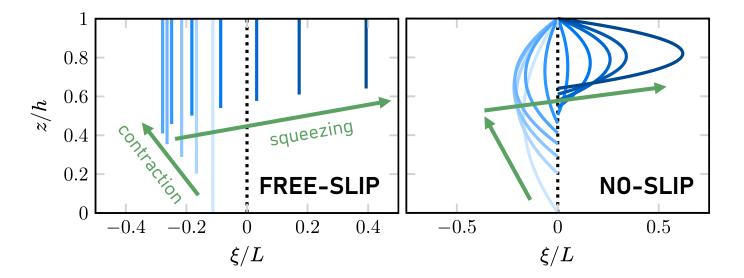
stretched out uniform horizontal displacement



Dynamics of lens growth



↑ time scaled on poroelastic timescale, free-slip BCs; interstitial fluid velocity shown as blue arrows



Two phases of gel deformation:

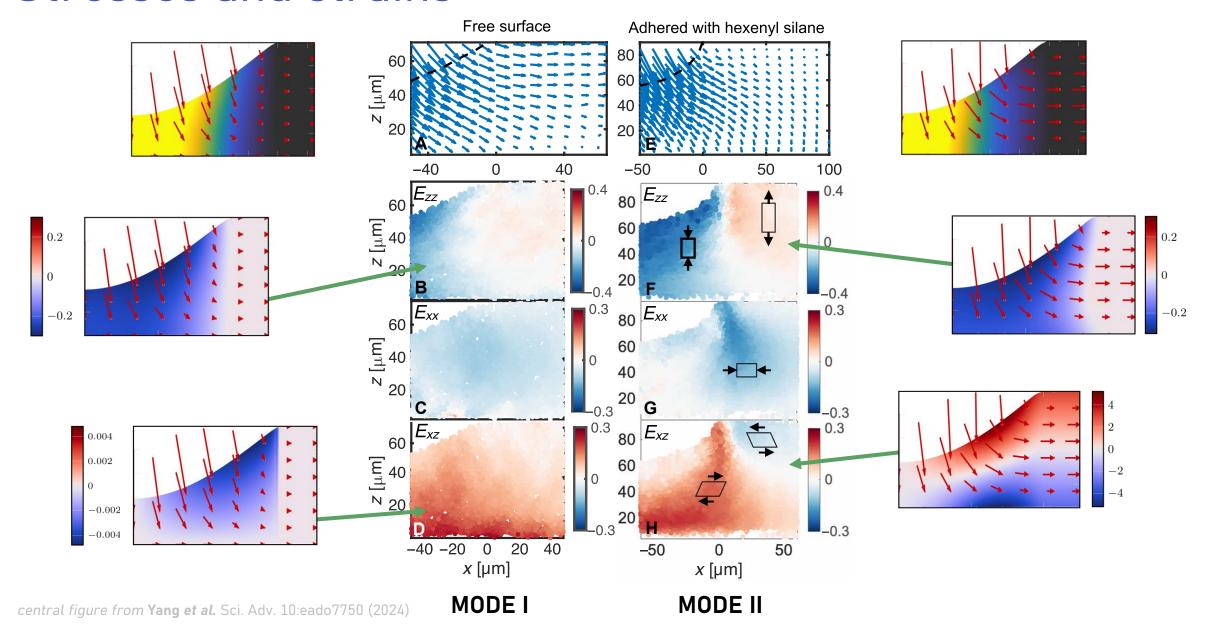
Contraction when the gel deswells, driving fluid to the ice and shrinking back in response

Squeezing when the growing ice compresses the gel and 'extrudes' it horizontally to the right

Eventually, deviatoric stresses exactly balance osmotic pressure gradients which result from

$$\Pi(\phi_\infty) = rac{
ho \mathcal{L}}{2} \left(1 - rac{T_C}{T_m}
ight) \left(1 + \cosrac{\pi x}{L}
ight)$$

Stresses and strains

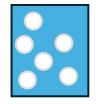


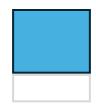
Understanding and controlling damage

How can we minimise damage, then, to soft materials when freezing them?

- Change the temperature:

dependent on whether we want to freeze water *in situ* or preserve cell structures, choose a temperature either side of the ice-entry value

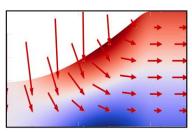




Change the confinement:

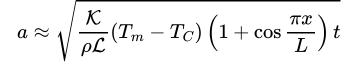
materials bound to stiff substrates build up more damage

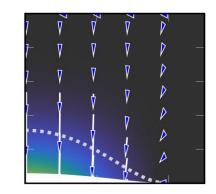
this is key in transplant organs, which should be detached from stiffer materials such as tendons to preserve them better



- Change the rate:

suction can cause damage, and our model quantifies the interstitial flow velocities as a function of undercooling





with thanks to

Grae Worster Cambridge

Rob Style ETH Zurich

Tom Montenegro-Johnson Warwick

more details can be found in

Webber, J. J. & Worster, M. G. Cryosuction and freezing hydrogels *Proc. Roy. Soc. A* 481 (2025) joe.webber@warwick.ac.uk jwebber.github.io

