xoxo, gossip gel

oscillating chemical reactions facilitate communication between responsive hydrogels

> Joseph Webber and Tom Montenegro-Johnson *Mathematics Institute, University of Warwick, UK*

joe.webber@warwick.ac.uk APS DFD 2024

- Responsive gels
- 2. Modelling responsive gels *quickly* and *macroscopically*
- 3. The BZ oscillating reaction
- 4. Coupling oscillating reactions with responsive gels
- 5. Gels + oscillating reaction + imposed strain = profit?

- **1. Stoychev** *et al.* Soft Matter 7 (2011)
- **2. Maeda** *et al.* Advanced Materials 19 (2007)

Responsive hydrogels

Responsive hydrogels: modelling

Osmotic components **Assembly** LENS modelling

$$
\phi_0(Y) = \begin{cases} \phi_{00} & Y \leq Y_C \\ \phi_{0\infty} & Y > Y_C \end{cases}
$$

$$
\Pi(\phi) = \Pi_0 \frac{\phi - \phi_0(Y)}{\phi_0(Y)}
$$

$$
\Big\vert \hspace{3pt} \boldsymbol{\sigma} = -\left[p+\Pi(\phi)\right]\boldsymbol{\mathsf{I}} + 2\mu_s(\phi)\boldsymbol{\epsilon}
$$

$$
\frac{\partial \phi}{\partial t} + \mathbf{q} \cdot \nabla \phi = \nabla \cdot \left\{ \frac{k(\phi)}{\mu_l} \left[\phi \frac{\partial \Pi}{\partial \phi} + \frac{4\mu_s(\phi)}{3} \left(\frac{\phi}{\phi_0} \right)^{1/3} \right] \nabla \phi \right\}
$$

Webber &\nWorster and Webber *et al.* (JFM 2023)

- Any gel described by three material parameters: osmotic pressure (responsivity), shear modulus (nature of response) and permeability (speed of response).
- Response occurs generally slowly by driving water in or out of the polymer scaffold.

Oscillating reactions and oscillating gels

joe.webber@warwick.ac.uk APS DFD 2024

Applying a strain changes the interfacial boundary condition and so deswells gel 2

$$
0 = \sigma_{xx} = -P + 2\mu_s \epsilon_{xx} = -P - 2\mu_s \epsilon_{zz} = -\Pi + 2\mu_s \left[1 - (\phi/\phi_{00})^{1/3} - E(t)\right]
$$

No stress at gel-fluid boundary Pervadic pressure continuous: *P=p+Π=Π*

joe.webber@warwick.ac.uk APS DFD 2024

Coupled oscillator models

A1: Diffusion is fast in the water

 $\partial^2 c/\partial x^2 \approx 0 \Rightarrow c=c_1+\frac{c_2-c_1}{L-a_1(t)-a_2(t)}[x-a_1(t)]$

A2: Gel response is rapid $(Da < 1)$ $|q(\partial c/\partial x)| \ll 1$ and $\phi(x, t) \equiv \phi_0(Y(t))$ so $a_i(t) = \phi_{00}a_0/\phi$

A3: Diffusion is fast in the gel
$$
c \equiv c_1, c_2
$$
 in each gel, respectively

A4: Reaction rates are proportional to polymer fraction $k = K_i/a_i(t)$ (where K_i depends on compression)

$$
\frac{\partial X}{\partial t} + u(x, t) \frac{\partial X}{\partial x} = k(x, t) [A + X^2 Y - (1 + B)X] + D_c(x, t) \frac{\partial^2 X}{\partial x^2}
$$

$$
\frac{\partial Y}{\partial t} + u(x, t) \frac{\partial Y}{\partial x} = k(x, t) [BX - X^2 Y] + D_c(x, t) \frac{\partial^2 Y}{\partial x^2}
$$

$$
\frac{dX_1}{dt} = \frac{K_1}{a_1(t)} \left[A + X_1^2 Y_1 - (1 + B)X_1 \right] + \frac{Q}{a_1(t)} (X_2 - X_1)
$$
\n
$$
\frac{dX_2}{dt} = \frac{K_2}{a_2(t)} \left[A + X_2^2 Y_2 - (1 + B)X_2 \right] + \frac{Q}{a_1(t)} (X_1 - X_2)
$$
\n
$$
\frac{dY_1}{dt} = \frac{K_1}{a_1(t)} \left[BX_1 - X_1^2 Y_1 \right] + \frac{Q}{a_1(t)} (Y_2 - Y_1)
$$
\n
$$
\frac{dY_2}{dt} = \frac{K_2}{a_2(t)} \left[BX_2 - X_2^2 Y_2 \right] + \frac{Q}{a_2(t)} (Y_1 - Y_2)
$$

 $t_{\rm diff,\,water} \ll t_{\rm pore} = t_{\rm diff,\,gel} \ll t_{\rm react}$

Coupled oscillator models

$$
\frac{dX_1}{dt} = \frac{K_1}{a_1(t)} [A + X_1^2 Y_1 - (1 + B)X_1] + \frac{Q}{a_1(t)} (X_2 - X_1)
$$

$$
\frac{dX_2}{dt} = \frac{K_2}{a_2(t)} [A + X_2^2 Y_2 - (1 + B)X_2] + \frac{Q}{a_1(t)} (X_1 - X_2)
$$

$$
\begin{aligned} \frac{\mathrm{d} Y_1}{\mathrm{d} t} &= \frac{K_1}{a_1(t)} \big[B X_1 - X_1^2 Y_1 \big] + \frac{\mathcal{Q}}{a_1(t)} (Y_2 - Y_1) \\ \frac{\mathrm{d} Y_2}{\mathrm{d} t} &= \frac{K_2}{a_2(t)} \big[B X_2 - X_2^2 Y_2 \big] + \frac{\mathcal{Q}}{a_2(t)} (Y_1 - Y_2) \end{aligned}
$$

$$
\sum_{10}
$$
 Full solution\n\n
$$
\sum_{5}
$$
\n\n
$$
\sum_{10}
$$
\n\n
$$
\sum_{10}
$$
\n\n
$$
\sum_{10}
$$
\n\n
$$
\sum_{15}
$$
\n\n
$$
\sum_{20}
$$
\n\n
$$
\sum_{25}
$$

$$
a_i(t)=\left\{\begin{matrix} a_0 & Y\leq Y_C \\ (\phi_{00}/\phi_{0\infty})a_0 & Y>Y_C \end{matrix}\right.
$$

$$
\mathcal{Q} = \frac{D_c^{\text{water}}}{L} \quad \text{is the coupling strength}
$$

Note strong coupling implies $X_1 = X_2$, $Y_1 = Y_2$ and $a_1 = a_2$ *-* add equations pairwise:

$$
\frac{\mathrm{d}X}{\mathrm{d}t}=\frac{K_1+K_2}{2a(t)}\big[A+X^2Y-(1+B)X\big]
$$

$$
\frac{\mathrm{d} Y}{\mathrm{d} t} = \frac{K_1+K_2}{2a(t)}\big[BX-X^2Y\big]
$$

Coupled oscillator models

$$
\begin{aligned} \frac{\mathrm{d}X}{\mathrm{d}t} &= \frac{K_1+K_2}{2a(t)}\big[A+X^2Y-(1+B)X\big] \\ \frac{\mathrm{d}Y}{\mathrm{d}t} &= \frac{K_1+K_2}{2a(t)}\big[BX-X^2Y\big] \end{aligned}
$$

Compute period by integrating to find residence time on slow region of limit cycle

Take an input signal and convert it to an applied strain on gel 2

 $1 16 19 4 6 4$ 201 011 020 011

 $E = 0.1 + 0.25b_i$

Take K_1 =1 and K_2 = $(1+E)^2$ (for a stiff gel). Measure *T* for gel 1, then

$$
E \approx -1 + \sqrt{\frac{\phi_{00} a_0}{\phi_{0\infty}} \frac{(B+1)^2}{2A^2 T_1} - 1}
$$

With thanks to

LEVERHULME

The University of Warwick, Leverhulme Trust (Research Leadership Award RL-2019-014 for Tom Montenegro-Johnson)

