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LENS model for hydrogels
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* But the first two require knowledge of the
displacement field; we don’t have this in our

framework



Displacement formulation

* In incompressible linear elasticity, £ satisfies the biharmonic equation
* Volumetric change > polymer fraction change and so

el ()

* Combine this with Cauchy’s momentum equation to find that u;V - €
is given by V P and therefore, taking curls,

0, 1/3 * Reduces to linear elasticity when polymer fraction is
Vit = —3VVi[ = -
— b0 uniform
* Can be interpreted like classical plate theory —
deviatoric deformation is forced due to gradients in
curvature of surfaces of constant polymer fraction




Displacement formulation
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* Mechanical boundary
conditions on stress and/or
displacement

* Interstitial boundary
conditions on pervadic
pressure

o= —[p+1(¢)|L+2u,(d)e
= 5 [Ve+(ve)"] - [1 (/80" ]L

This provides a complete
set of Galilean-invariant
equations and boundary
conditions to solve for the
evolution of a gel in any
geometry
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Drying of slender cylinders

Curved top and bottom
interfaces

Differential drying

* Model as a cylinder of initial radius ag and height hg with its base
immersed in water and sides open to the air to dry

* Describe drying through the use of a fixed evaporative flux from top
and sides (e.g. in an environment of fixed humidity)



Boundary conditions

* On the base, no normal stress and continuity of pervadic pressure
combine to imply that ¢ = ¢, - the gel is fully-swollen.

* Stress boundary conditions on the
sides give

Opp = Opy = 0 (r=ua(zt))
* Evaporative flux boundary conditions  H(t)

require, at leading order,

- Vp = —pu/k(¢) (2= H(t))
n-Vp= _Ulus/k(qb) (’I° — a’(za t))




Slenderness and polymer fraction

* Requiring small deviatoric strain enforces small gradients in polymer
fraction, and therefore, with

Op/0z ~ Ap/hg < Ad/ag

so order-unity differences in polymer fraction can be supported along
the axis, but not radially. This motivates taking

¢(’I”, 2y t) — ¢C(Za t) + qsl('r; 2 t)

* Here, ¢; ~ (ag/ho) ¢ and separation of variables in the polymer-
fraction evolution equation gives

®1 (7“; 2y t) — f(za t)T2



Slenderness and polymer fraction

* Imposing the evaporative flux boundary condition and assuming
constant material parameters K, u; and k implies that
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Displacements and cylinder shape

* Using the equation derived earlier for the displacements, the vertical

and horizontal displacement fields can be deduced, giving the shape of
the gel

* The expression for the radius suggests
isotropic contraction at fixed vertical position

ho= | 1—(¢c/¢0)"" d
b 5 13 * The height then follows from polymer
s1(r, 1) = 5 - (iﬁ) conservation
z=0

2 1/3
s2(r, t) = 7«2 0 (¢0) * Differential drying creates the curved top and
=H  bottom interfaces



Drymg from the top
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* Curved top and bottom surfaces form due to
differential drying

* Notice the small radial gradients 9¢/0r < 0 that
arise from the need to impose no evaporation
from the sides

* A steady state is reached where uptake of
water from the base matches evaporative flux
from the top



Drying from the sides
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* In this case, radial shrinkage dominates axial
shrinkage, and at early times, the shrinkage is
axially-uniform

- * Here, d¢/0r > 0 to drive flow radially owing to the
imposed evaporation flux

* A different steady state is reached in this case;
there are no vertical gradients in polymer
fraction on the top surface so it remains flat



Conclusions

* Can deduce an expression for the displacement field, describing the
shape of a hydrogel as it swells or dries

* We can use this result to find stresses throughout the gel, and the
interstitial flows throughout

* Differential drying leads to small deviatoric strains which result in
curved surfaces of constant polymer fraction
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