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LENS model for hydrogels
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• Require boundary conditions on displacements, 

stresses and interstitial quantities

• But the first two require knowledge of the 

displacement field; we don’t have this in our 

framework
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Displacement formulation
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• In incompressible linear elasticity,    satisfies the biharmonic equation

• Volumetric change → polymer fraction change and so

• Combine this with Cauchy’s momentum equation to find that              

is given by        and therefore, taking curls,

• Reduces to linear elasticity when polymer fraction is 

uniform

• Can be interpreted like classical plate theory – 

deviatoric deformation is forced due to gradients in 

curvature of surfaces of constant polymer fraction



Displacement formulation
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• Mechanical boundary 

conditions on stress and/or 

displacement

• Interstitial boundary 

conditions on pervadic 

pressure

This provides a complete 

set of Galilean-invariant 

equations and boundary 

conditions to solve for the 

evolution of a gel in any 

geometry



Drying of slender cylinders
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• Model as a cylinder of initial radius A  and height H0with its base 

immersed in water and sides open to the air to dry

• Describe drying through the use of a fixed evaporative flux from top 

and sides (e.g. in an environment of fixed humidity)

Curved top and bottom 

interfaces

Differential drying



Boundary conditions
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• On the base, no normal stress and continuity of pervadic pressure 

combine to imply that            - the gel is fully-swollen.

• Stress boundary conditions on the 

sides give

• Evaporative flux boundary conditions 

require, at leading order,



Slenderness and polymer fraction
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• Requiring small deviatoric strain enforces small gradients in polymer 

fraction, and therefore, with 

so order-unity differences in polymer fraction can be supported along 

the axis, but not radially. This motivates taking

• Here,                       and separation of variables in the polymer-

fraction evolution equation gives 



Slenderness and polymer fraction
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• Imposing the evaporative flux boundary condition and assuming 

constant material parameters          and    implies that

• Then,  

… but also need the shape of 

the gel at any given time



Displacements and cylinder shape
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• Using the equation derived earlier for the displacements, the vertical 

and horizontal displacement fields can be deduced, giving the shape of 

the gel

• The expression for the radius suggests 

isotropic contraction at fixed vertical position

• The height then follows from polymer 

conservation

• Differential drying creates the curved top and 

bottom interfaces



Drying from the top
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• Curved top and bottom surfaces form due to 

differential drying

• Notice the small radial gradients               that 

arise from the need to impose no evaporation 

from the sides

• A steady state is reached where uptake of 

water from the base matches evaporative flux 

from the top 



Drying from the sides
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• In this case, radial shrinkage dominates axial 

shrinkage, and at early times, the shrinkage is 

axially-uniform

• Here,               to drive flow radially owing to the 

imposed evaporation flux 

• A different steady state is reached in this case; 

there are no vertical gradients in polymer 

fraction on the top surface so it remains flat



Conclusions
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• Can deduce an expression for the displacement field, describing the 

shape of a hydrogel as it swells or dries

• We can use this result to find stresses throughout the gel, and the 

interstitial flows throughout

• Differential drying leads to small deviatoric strains which result in 

curved surfaces of constant polymer fraction
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