APS DFD 2022 Sunday 20th November, Session G11

A linear-elastic-nonlinear-swelling theory for hydrogels: displacements and differential swelling

Joseph J.Webber, M. Grae Worster, Merlin A. Etzold

Department of Applied Mathematics and Theoretical Physics, University of Cambridge

(2) **Webber, Worster & Etzold** A linear-elastic-nonlinear-swelling theory for hydrogels: displacements and differential swelling

LENS model for hydrogels

$$\frac{\partial \phi}{\partial t} + \boldsymbol{q} \cdot \boldsymbol{\nabla} \phi = \boldsymbol{\nabla} \cdot \left[\frac{k(\phi)}{\mu_l} \left\{ K(\phi) + \frac{4\mu_s(\phi)}{3} \left(\frac{\phi}{\phi_0} \right)^{1/3} \right\} \boldsymbol{\nabla} \phi \right]$$
Fluid viscosity

 $egin{aligned} \underline{oldsymbol{\sigma}} &= -[p + \Pi(\phi)] \underline{oldsymbol{I}} + 2\mu_s(\phi) \underline{oldsymbol{\epsilon}} \ \underline{oldsymbol{\epsilon}} &= rac{1}{2} igl[oldsymbol{
aligned} oldsymbol{\xi} + (oldsymbol{
aligned} oldsymbol{\xi})^{ ext{T}} igr] - igl[1 - (\phi/\phi_0)^{1/3} igr] \underline{oldsymbol{I}} \end{aligned}$

- Require boundary conditions on displacements, stresses and interstitial quantities
- But the first two require knowledge of the displacement field; we don't have this in our framework

Displacement formulation

- In incompressible linear elasticity, $\boldsymbol{\xi}$ satisfies the biharmonic equation
- Volumetric change \rightarrow polymer fraction change and so

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol{
abla} oldsymbol{\cdot} oldsymbol{\xi} = 3 \Bigg[1 - igg(rac{\phi}{\phi_0} igg)^{1/3} \Bigg]$$

• Combine this with Cauchy's momentum equation to find that $\mu_s \nabla \cdot \epsilon$ is given by ∇P and therefore, taking curls,

$$abla^4 oldsymbol{\xi} = -3 oldsymbol{
abla}
abla^2 igg(rac{\phi}{\phi_0} igg)^{1/3}$$

- Reduces to linear elasticity when polymer fraction is uniform
- Can be interpreted like classical plate theory deviatoric deformation is forced due to gradients in curvature of surfaces of constant polymer fraction

Displacement formulation

$$rac{\partial \phi}{\partial t} + oldsymbol{q} \cdot oldsymbol{
abla} \phi = oldsymbol{
abla} \cdot \left[rac{k(\phi)}{\mu_l} \Biggl\{ K(\phi) + rac{4\mu_s(\phi)}{3} \Biggl(rac{\phi}{\phi_0} \Biggr)^{1/3} \Biggr\} oldsymbol{
abla} \phi
ight]$$

$$oldsymbol{q} = \left(rac{\phi}{\phi_0}
ight)^{1/3} rac{\partial oldsymbol{\xi}}{\partial t} - rac{k(\phi)}{\mu_l} oldsymbol{
abla} p$$

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol{
abla} oldsymbol{
bla} oldsymbol{\delta} = 3 \Bigg[1 - \Bigg(rac{\phi}{\phi_0} \Bigg)^{1/3} \Bigg]$$

$$abla^4 oldsymbol{\xi} = -3 oldsymbol{
abla}
abla^2 igg(rac{\phi}{\phi_0}igg)^{1/3}$$

 Mechanical boundary conditions on stress and/or displacement

 Interstitial boundary conditions on pervadic pressure

$$egin{aligned} \underline{\pmb{\sigma}} &= -[p + \Pi(\phi)] \underline{\pmb{I}} + 2\mu_s(\phi) \underline{\pmb{\epsilon}} \ \underline{\pmb{\epsilon}} &= rac{1}{2} ig[m{
abla} m{\xi} + (m{
abla} m{\xi})^{ ext{T}} ig] - ig[1 - (\phi/\phi_0)^{1/3} ig] \underline{\pmb{I}} \end{aligned}$$

This provides a complete set of Galilean-invariant equations and boundary conditions to solve for the evolution of a gel in any geometry

Drying of slender cylinders

- Model as a cylinder of initial radius a_0 and height h_0 with its base immersed in water and sides open to the air to dry
- Describe drying through the use of a **fixed** evaporative flux from top and sides (e.g. in an environment of fixed humidity)

Differential drying

Boundary conditions

- On the base, no normal stress and continuity of pervadic pressure combine to imply that $\phi = \phi_0$ the gel is fully-swollen.
- Stress boundary conditions on the sides give

$$\sigma_{rr}=\sigma_{rz}=0 \qquad (r=a(z,\,t))$$

 Evaporative flux boundary conditions require, at leading order,

$$egin{aligned} m{\hat{n}} m{\cdot} m{
abla} p &= -\mu_l u_t / k(\phi) & (z = H(t)) \ m{\hat{n}} m{\cdot} m{
abla} p &= -\mu_l u_s / k(\phi) & (r = a(z,\,t)) \end{aligned}$$

Slenderness and polymer fraction

• Requiring small deviatoric strain enforces small gradients in polymer fraction, and therefore, with

 $\partial \phi / \partial z \sim \Delta \phi / h_0 \ll \Delta \phi / a_0$

so order-unity differences in polymer fraction can be supported along the axis, but not radially. This motivates taking

 $\phi(r,\,z,\,t)=\phi_C(z,\,t)+\phi_1(r;\,z,\,t)$

• Here, $\phi_1 \sim (a_0/h_0) \phi_C$ and separation of variables in the polymer-fraction evolution equation gives

$$\phi_1(r;\,z,\,t)=f(z,\,t)r^2$$

Slenderness and polymer fraction

• Imposing the evaporative flux boundary condition and assuming constant material parameters K, μ_s and k implies that

$$\phi_1 = rac{\phi_C}{2a} \Biggl\{ rac{\mu_l \phi_C u_s}{k} \Biggl[rac{K \phi_C}{\phi_0} + rac{4 \mu_s}{3} \Biggl(rac{\phi_C}{\phi_0} \Biggr)^{1/3} \Biggr]^{-1} + rac{1}{\phi_C} rac{\partial \phi_C}{\partial z} rac{\partial a}{\partial z} \Biggr\} r^2$$

• Then,

$$egin{aligned} rac{\partial \phi_C}{\partial t} + q_z rac{\partial \phi_C}{\partial z} &= rac{1}{a^2} rac{\partial}{\partial z} iggl[a^2 D(\phi_C) rac{\partial \phi_C}{\partial z} iggr] + rac{2\phi_C u_s}{a} \ q_z &= rac{D(\phi_C)}{\phi_C} rac{\partial \phi_C}{\partial z} - iggl(rac{\phi_C}{\phi_0} iggr)^{1/3} \int_0^z rac{\partial}{\partial t} iggl(rac{\phi_C}{\phi_0} iggr)^{1/3} \mathrm{d}z' \ D(\phi_C) &= rac{k}{\mu_l} iggl[rac{K\phi_C}{\phi_0} + rac{4\mu_s}{3} iggl(rac{\phi_C}{\phi_0} iggr)^{1/3} iggr] \end{aligned}$$

 $\phi_C = 0 \qquad (z=0) \ \partial \phi_C / \partial z = \phi_C u_t / D(\phi_C) \qquad (z=H(t))$

... but also need the shape of the gel at any given time

Displacements and cylinder shape

 Using the equation derived earlier for the displacements, the vertical and horizontal displacement fields can be deduced, giving the shape of the gel

$$egin{aligned} &a(z,\,t)=&(\phi_C/\phi_0)^{-1/3}a_0\ &h_0=\int_0^{H(t)}1-&(\phi_C/\phi_0)^{1/3}\,\mathrm{d}z'\ &s_1(r,\,t)=rac{r^2}{2}rac{\partial}{\partial z}igg(rac{\phi_C}{\phi_0}igg)^{1/3}igg|_{z=0}\ &s_2(r,\,t)=rac{r^2}{2}rac{\partial}{\partial z}igg(rac{\phi_C}{\phi_0}igg)^{1/3}igg|_{z=H} \end{aligned}$$

- The expression for the radius suggests isotropic contraction at fixed vertical position
- The height then follows from polymer conservation
- Differential drying creates the curved top and bottom interfaces

Drying from the top

- Curved top and bottom surfaces form due to differential drying
- Notice the small radial gradients $\partial \phi / \partial r < 0$ that arise from the need to impose no evaporation from the sides
- A steady state is reached where uptake of water from the base matches evaporative flux from the top

Drying from the sides

- In this case, radial shrinkage dominates axial shrinkage, and at early times, the shrinkage is axially-uniform
- Here, $\partial \phi / \partial r > 0$ to drive flow radially owing to the imposed evaporation flux
- A different steady state is reached in this case; there are no vertical gradients in polymer fraction on the top surface so it remains flat

Conclusions

- Can deduce an expression for the displacement field, describing the shape of a hydrogel as it swells or dries
- We can use this result to find stresses throughout the gel, and the interstitial flows throughout
- Differential drying leads to small deviatoric strains which result in curved surfaces of constant polymer fraction

Webber, J. J., Etzold, M.A. and Worster, M. G. A linear-elasticnonlinear-swelling theory for hydrogels. Part 2. Displacement formulation (J. Fluid Mech., submitted)

Na En Re

j.webber@damtp.cam.ac.uk 🛽

Natural Environment **Research Council**

@jwebber97