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Thermo-responsive hydrogels are smart materials that can rapidly switch between hydrophilic6
(swollen) and hydrophobic (shrunken) states when heated past a threshold temperature. This7
switch results in order-of-magnitude changes in gel volume, allowing for the construction of8
microfluidic devices or smart actuators. However, modelling thermo-responsive hydrogels9
is difficult, and typically involves fitting a large number of material parameters to tune the10
model to experimental data. In this paper, we extend the intuitive and inherently macroscopic11
linear-elastic-nonlinear-swelling (LENS) model of Webber & Worster (J. Fluid Mech, vol.12
96, 2023, A37) to incorporate thermo-responsivity. We show how temperature affects the13
osmotic pressure of a gel and therefore modifies the equilibrium polymer fraction. Using this14
model, we then consider hollow tubes of thermo-responsive hydrogel immersed in water,15
which deswell when heated, pumping fluid as the tube collapses. Such tubes may be able16
to act as effective “on-board” displacement pumps on smart microfluidic devices, removing17
the need for bulky pressure-driven syringe pumps. We finally show how the response times18
and flow characteristics in the tubes may be easily modified by varying the geometry or19
material properties of the hydrogel, allowing for faster response times in larger-scale devices20
and unlocking new possibilities for dynamic shape change.21
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1. Introduction26

Hydrogels are soft porous materials comprising a cross-linked, hydrophilic, polymer structure27
surrounded by adsorbed water molecules that are free to move through the porous scaffold28
(Doi 2009; Bertrand et al. 2016; Webber & Worster 2023). Though simple in structure,29
their elastic and soft nature, coupled with the ability to change volume to an extreme degree30
by swelling or drying, affords them a number of uses in engineering, medical sciences31
and agriculture (Zohuriaan-Mehr et al. 2010; Guilherme et al. 2015). In addition to these32
applications of ‘passive’ hydrogels, all based on the composition or large-swelling behaviour33
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of such materials, so-called responsive hydrogels have also been developed, where the affinity34
of the polymer scaffold for water changes as a result of external stimuli such as heat, light or35
chemical concentration (Neumann et al. 2023).36

In recent years, interest in ‘smart’ materials with controllable shape changing behaviour37
has increased, with implementations in soft robotics (Lee et al. 2020), microfluidics (Dong38
& Jiang 2007), and in models of biological processes (Vernerey & Shen 2017). Though39
responsive gels can react to stimuli of various forms, the most ubiquitous are thermo-40
responsive gels, where the affinity of the polymer chains for water drops rapidly at a critical41
temperature 𝑇𝐶 . Above this lower critical solution temperature (LCST), hydrogen bonds42
holding the water molecules in place around the polymer chains break, and release of water43
molecules is entropically favoured. There exist a number of polymers which can form such44
responsive gels, but since the critical deswelling temperature of poly(N-isopropylacrylamide)45
(PNIPAM) can be tuned to be close to room temperature, this is a common material choice46
for applications involving responsive gels (Butler & Montenegro-Johnson 2022). The effect47
of deswelling is significant, with many such gels exhibiting an order-of-magnitude volume48
change at 𝑇𝐶 , opening up the possibility of a number of macroscopic use cases for responsive49
gels (Voudouris et al. 2013).50

In order to model the response of gels to changes in temperature, many authors seek the51
dependence of the Helmholtz free energy on the ambient temperature. This is encoded by52
the Flory 𝜒 parameter, representing the attraction between water molecules and polymer53
chains. This parameter typically decreases with increasing temperature (Cai & Suo 2011),54
but its value is usually deduced from fitting (Afroze et al. 2000). Accurately determining the55
𝜒 parameter is a long-standing problem in polymer physics, with experimental approaches56
often difficult, owing to the number of different physical processes underpinning solvent–57
polymer and polymer–polymer interactions, with some more recent work using machine58
learning approaches (Nistane et al. 2022) to seek patterns in the variation of 𝜒 with polymer59
structure. It is, nonetheless, an important pursuit, since small changes in 𝜒 can lead to large60
differences in the physics of hydrogels.61

Given an expression for the Helmholtz free energy, it can then be minimised with respect to62
deformation to allow the equilibrium swelling state at a fixed temperature to be determined.63
However, describing the transient evolution of the state of the hydrogel as the temperature64
is varied is significantly more difficult, and requires the separate consideration of chemical65
potentials, polymer network elasticity and induced interstitial flows through the gel. In66
traditional large-strain poroelastic modelling Bertrand et al. (2016), the principal stresses67
(in the directions of the principal stretches) are deduced from the energy, and these are then68
balanced with gradients in chemical potential to describe the poroelastic flow, and thus the69
evolution of the gel, in time. The potential for such a formulation to admit analytical solutions70
is limited.71

While effective, these models rely on a characterisation of the material in terms of a large72
number of microscopic parameters, are computationally expensive, and result in a series73
of coupled partial differential equations for porosity, chemical potential and stresses, which74
potentially masks some of the key macro-scale physics driving the responsive dynamics.75
For these reasons, we seek a model based only on macroscopically-measurable material76
properties to give faster predictions to describe the transient swelling-deswelling states in77
response to temperature changes. Since many of the applications of these responsive gels78
are to systems such as small microfluidic devices (Harmon et al. 2003) or robotic actuators79
(Lee et al. 2020), being able to predict behaviour accurately with few parameters and with80
the existence of analytical solutions is of great importance.81

It is possible to model the behaviour of deformable soft porous media using the theory82
of linear poroelasticity, characterising the gel by its elastic moduli and describing the flow83
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through the scaffold using Darcy’s law (Doi 2009). These models are analytically-tractable84
and macroscopic in nature. However, they cannot cope with nonlinearities that arise from85
large swelling strains, and are therefore unsuitable for modelling super-absorbent gels, where86
the volumetric changes involved in swelling and drying may be of the order of 10 to 10087
times (Bertrand et al. 2016).88

Swelling and drying involve isotropic deformation of the polymer scaffold, however, and it89
is reasonable to assume that, at any swelling state, the hydrogel material acts as a linear-elastic90
bulk solid. In Webber & Worster (2023) and Webber et al. (2023), a model is introduced that91
allows for nonlinearities in the isotropic strain but linearises around small deviatoric strains,92
allowing for us to reduce the gel dynamics to a nonlinear advection-diffusion equation for the93
local polymer (volume) fraction 𝜙. The model characterises any gel in terms of three material94
parameters, all of which depend on polymer fraction: a shear modulus 𝜇𝑠 (𝜙) characterising95
resistance to shear deformation; a permeability 𝑘 (𝜙) describing the viscous resistance to96
flow through the scaffold; and an osmotic modulus Π(𝜙) encoding the affinity between97
water and polymer molecules. In this paper, we incorporate thermo-responsive effects in the98
above linear-elastic-nonlinear-swelling model by assuming that the osmotic pressure (and99
potentially other material parameters) can depend also on temperature. This dependency100
leads to different swelling behaviour as the temperature is varied, and different equilibrium101
states either side of the LCST.102

We begin with the Helmholtz free energy derived from Flory-Huggins theory and neo-103
Hookean elasticity of polymer chains, commonly used in models for active gel behaviour.104
This approach is used widely in the thermo-responsive gels literature, and has been seen to105
provide an accurate description of the swelling and deswelling processes (Cai & Suo 2011;106
Butler & Montenegro-Johnson 2022). From this starting position, in section 2 we derive a107
stress tensor and identify the osmotic modulus and shear modulus, for temperature𝑇 , polymer108
fraction 𝜙, and combinations of the parameters commonly used in nonlinear models. Using109
literature values for these parameters, our reduced model is able to reproduce key results and110
observations from the fully nonlinear models.111

The utility of such a tractable model is found in its ability to apply to a number of more112
complicated physical settings and provide good qualitative and quantitative predictions of113
the key physics at play. Such examples are seen in soft robotic and microfluidic devices114
where the geometry changes in response to an external stimulus, or where changes in115
geometry pump solvent fluid from one place to another. Hydrogels have long been proposed116
as ideal materials to achieve this in microfluidic devices, either through functioning as117
valves (Dong & Jiang 2007), as passive pumps (drawing in water through their swelling118
behaviour) (Seo et al. 2019), or indeed as displacement pumps (Richter et al. 2009). It is this119
latter behaviour that we model here, considering the contraction of a hollow tube formed of120
thermo-responsive hydrogel when a heat pulse is applied, and using the thermo-responsive121
linear-elastic-nonlinear-swelling model derived in section 2 to deduce both the shrunken122
geometry and the transition from swollen to shrunken states by the flow of water through the123
hydrogel walls and the hollow lumen of the ‘pipe’.124

Notably, the presence of a fluid-filled pore in the centre of a tube allows for much faster125
responses to changes in temperature than in a pure gel, since the flow that results from126
deswelling is not restricted by viscous resistance through the pore matrix. Our model gives127
expressions for the pumping rate and characteristics of the induced peristaltic fluid flow in128
response to propagating heat pulses.129

In addition to applications driving fluid flow in microfluidic devices, a number of existing130
applications depend on the ability to tune response times to external stimuli (Maslen et al.131
2023). In such constructions, anisotropic shape changes result from isotropic deswelling132
that occurs at different rates - so-called “dynamic anisotropy” - in response to a heat pulse.133
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Figure 1: On the left, the reference state where 𝜙 ≡ 𝜙0 and the cross-linked polymers are
in thermodynamic equilibrium with the surroundings. On the right, a schematic

decomposition of any deformation (dashed lines) from this reference state (dotted lines)
into an isotropic part due to drying (in this case) and a small deviatoric part.

This behaviour is key to unlocking non-reciprocal shrinking-swelling dynamics, critical134
for achieving work in the inertialess fluid regime. The existence of a simplified, analytic,135
understanding of thermo-responsive gels allows us to tune the thickness of the pipe walls to136
give a desirable response time, allowing for the construction of responsive hydrogel devices137
with controllable response rates to external stimuli, irrespective of the intrinsic material138
response rate.139

2. Thermo-responsive linear-elastic-nonlinear-swelling model140

The linear-elastic-nonlinear-swelling (henceforth LENS) model introduced in Webber &141
Worster (2023) and Webber et al. (2023) is a poromechanical continuum model for the142
behaviour of large-swelling gels. The model is derived based upon the assumption that143
isotropic strains, corresponding to the swelling and drying of a gel, may be large, but144
deviatoric strains must be small. Figure 1 shows how a general deformation from a reference145
state can be decomposed into these two parts, and illustrates how we can view isotropic146
shrinkage or growth as drying or swelling, respectively. In other words, at any given degree147
of swelling, a hydrogel is modelled as a linear-elastic material with ‘macroscopic’ parameters,148
dependent on its degree of swelling. These parameters characterise both the elastic response149
and the flow of interstitial water. In general, we expect drier gels (with a higher local polymer150
fraction) to be stiffer and less permeable.151

In the LENS model, the degree of swelling is quantified by the local polymer (volume)152
fraction 𝜙, and all deformation is measured relative to a uniformly-swollen reference state153
where 𝜙 ≡ 𝜙0, the free-swelling equilibrium (figure 1a). If gel elements in the reference state154
are labelled by the Lagrangian coordinates 𝑿, any deformation of the gel can be described155
by a mapping to Eulerian coordinates 𝒙. The deformation gradient tensor F is defined as156
the backwards derivative of the Eulerian coordinates relative to the Lagrangian ones (Reddy157
2013), and has components158

F𝑖 𝑗 =
𝜕𝑥𝑖

𝜕𝑋 𝑗

, (2.1)159

with the volumetric change of a deformation being given by 𝐽 = det F . Volume can only160
change via movement of water into or out of the polymer scaffold, since both phases are161
considered to be separately incompressible, and therefore 𝐽 = (𝜙/𝜙0)−1. The governing162
assumption of the LENS model is that the deformation described by F is, at leading order,163
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isotropic and swelling-driven, so that164

F =

(
𝜙

𝜙0

)−1/3
I + f , (2.2)165

with all components f𝑖 𝑗 small. Measuring displacements 𝝃 = 𝒙−𝑿 relative to the equilibrium,166
a Cauchy strain tensor e can be defined with167

e =
1
2

[
∇𝝃 + (∇𝝃)T] = I − 1

2

(
F + F T

)−1
=

[
1 −

(
𝜙

𝜙0

)1/3
]

I + 𝜖, (2.3)168

using the Taylor series expansion for the inverse of a nearly-diagonal matrix (Petersen &169
Pedersen 2012), where170

𝜖 =
1
2

(
𝜙

𝜙0

)2/3 (
f + f T

)
+𝑂 (f 2) (2.4)171

is the (small) deviatoric strain. The isotropic strain can be seen to be related solely to changes172
in polymer fraction, via the volumetric expansion factor 𝐽 (Webber & Worster 2023). Central173
to LENS modelling is the constitutive relation for the Cauchy stress tensor174

𝜎 = − [𝑝 + Π(𝜙)] I + 2𝜇𝑠 (𝜙)𝜖, (2.5)175

relating deformation of the hydrogel to stresses. Here, there is a deviatoric ‘shear stress’176
term arising from deviatoric strain and governed by the shear modulus 𝜇𝑠 (𝜙) and a term177
dependent on the bulk pressure 𝑃 = 𝑝 + Π(𝜙).178

The bulk pressure 𝑃 is split into a contribution from the pervadic pressure 𝑝 (Peppin179
et al. 2005) and the generalised osmotic pressure Π(𝜙). The pervadic pressure is akin to180
the chemical potential in other models (Bertrand et al. 2016; Butler & Montenegro-Johnson181
2022), and defined to be the pressure of the fluid component as would be measured behind182
a partially-permeable membrane that only allows fluid to pass. It is gradients in 𝑝 that drive183
flow through the interstices of the gel matrix, via Darcy’s law184

𝒖 = − 𝑘 (𝜙)
𝜇𝑙

∇𝑝, (2.6)185

where 𝑘 (𝜙) is the permeability (which we expect to decrease with increasing polymer frac-186
tion) and 𝜇𝑙 is the fluid viscosity. Meanwhile, the generalised osmotic pressure (henceforth187
simply the osmotic pressure) Π(𝜙) is given by Π = 𝑃 − 𝑝 and has contributions both from188
mixing of the polymer and water phases and isotropic elasticity of the scaffold, representing189
the affinity of the gel for water.190

Coupled with conservation equations for water and polymer, interstitial flows lead to191
swelling and drying, processes which can be described by the advection-diffusion equation192

𝜕𝜙

𝜕𝑡
+ 𝒒 · ∇𝜙 = ∇ · [𝐷 (𝜙)∇𝜙] with 𝐷 (𝜙) = 𝑘 (𝜙)

𝜇𝑙

[
𝜙
𝜕Π

𝜕𝜙
+ 4𝜇𝑠 (𝜙)

3

(
𝜙

𝜙0

)1/3
]
, (2.7)193

where 𝒒 is a phase-averaged flux vector equal to the sum of polymer velocity (the rate of194
deformation of the scaffold) and interstitial fluid flux. In Webber & Worster (2023) it is further195
shown that whenever the assumptions of small deviatoric strain are made, all behaviour can196
be described in terms of 𝝃 and 𝜙 through197

𝒖 =
𝐷 (𝜙)
𝜙

∇𝜙, ∇ · 𝒒 = 0 and 𝒒 =
𝐷 (𝜙)
𝜙

∇𝜙 +
(
𝜙

𝜙0

)−1/3
𝜕𝝃

𝜕𝑡
. (2.8)198
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Therefore, the response of any gel can be characterised by three material parameters:199
an osmotic pressure Π(𝜙), a shear modulus 𝜇𝑠 (𝜙) and a permeability 𝑘 (𝜙), all of which200
influence the polymer diffusivity 𝐷 (𝜙) of equation (2.7). A key foundation of the LENS201
approach is that these three parameters are macroscopically-measurable and there is no202
discussion of the microscopic processes – such as the electrostatic attraction between water203
and polymer molecules or the entropic contributions from mixing – that govern these204
observable properties. However, given a model for the microscopic-scale interactions, the205
material properties can be determined. For example, the model of Cai & Suo (2012) is used to206
derive expressions for Π(𝜙) and 𝜇𝑠 (𝜙) in the limit of small deviatoric strains in an appendix207
of Webber & Worster (2023), allowing us to then use the LENS formalism for gel dynamics,208
based on the physics captured by this particular expression for the Helmholtz free energy.209

In the present study, we will assume that 𝑘 (𝜙) = 𝑘 , a constant, for simplicity, even210
though we expect permeability to decrease as polymer fraction increases. This approach211
is taken by other authors, including Butler & Montenegro-Johnson (2022), who note that212
incorporating a 𝜙-dependent permeability leads to few qualitative differences from cases213
where it does not vary as the gel swells or dries. We instead seek the dependence of the214
remaining two material parameters on the ambient temperature, explaining the qualitative215
changes to hydrogel behaviour as the critical temperature threshold for deswelling, 𝑇 = 𝑇𝐶 ,216
is crossed.217

2.1. Thermodynamic models for thermo-responsive hydrogels218

In order to describe responsive hydrogels in the context of our LENS model, a reference state219
that is independent of temperature must be introduced. In the present study, we consider a220
reference temperature 𝑇0 (well below the LCST threshold 𝑇𝐶 for deswelling), and define the221
reference state as the uniformly swollen state attained by an unconstrained gel left to swell222
in an excess of water at 𝑇 = 𝑇0, where 𝜙 ≡ 𝜙00.223

As the temperature changes, the equilibrium polymer fraction 𝜙0(𝑇) will also change, with224
𝜙0 being greater above the critical temperature 𝑇𝐶 , and lower below; in other words, the gel225
swells to a greater degree at lower temperatures. We write the reference equilibrium polymer226
fraction as 𝜙0(𝑇0) = 𝜙00. The equilibrium value is reached in the absence of any stresses in227
the gel, and so the osmotic pressure Π(𝜙0) = 0 at any temperature.228

In Butler & Montenegro-Johnson (2022), the standard energy density function for a thermo-229
responsive hydrogel (Cai & Suo 2011) is used, following Flory-Huggins mixture theory and230
a neo-Hookean elastic model for the polymer chains,231

W =
𝑘𝐵𝑇

2Ω𝑝

[
tr

(
FdFd

𝑇
)
− 3 + 2 log 𝜙

]
+ 𝑘𝐵𝑇
Ω 𝑓

[
1 − 𝜙
𝜙

log (1 − 𝜙) + 𝜒(𝜙, 𝑇) (1 − 𝜙)
]
, (2.9)232

where Fd is the deformation gradient tensor measured relative to a fully-dry polymer, the233
same as the F defined above if 𝜙0 were equal to unity. We can rewrite Fd in terms of F , the234
deformation gradient measured relative to a state where 𝜙 ≡ 𝜙00, since the transition between235
the two states can be described by an isotropic scaling transformation,236

Fd =

(
𝜙
−1/3
00 I

)
F = 𝜙

−1/3
00 F so tr

(
FdFd

𝑇
)
= 𝜙

−2/3
00 F𝑎𝑏F𝑎𝑏, (2.10)237

using Einstein summation convention. Following the approach of Cai & Suo (2012), the238
Terzaghi effective stress tensor 𝜎 (𝑒) (i.e. 𝜎 + 𝑝I) has components given by239

𝜎
(𝑒)
𝑖 𝑗

= 𝜙
𝜕W
𝜕F𝑖𝑘

F 𝑗𝑘 , (2.11)240

again using summation convention. This derivation is usually based on the assumption of a241
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spatially-uniform and constant temperature field, though appendix A justifies its use for the242
cases we are considering here. Since det F = 𝜙00/𝜙, the expression for the derivative of a243
determinant with respect to a matrix (Petersen & Pedersen 2012) implies that244

𝜕𝜙

𝜕F𝑖𝑘

= −𝜙F−1
𝑘𝑖 . (2.12)245

Hence,246

𝜕W
𝜕F𝑖𝑘

=
𝑘𝐵𝑇

Ω 𝑓

{
1

Ω𝜙
2/3
00

F𝑖𝑘 +
[
log (1 − 𝜙)

𝜙
+ 1 + 𝜙𝜒(𝜙, 𝑇) − 𝜙(1 − 𝜙) 𝜕𝜒

𝜕𝜙
− 1
Ω

]
F−1
𝑘𝑖

}
and247

𝜎
(𝑒)
𝑖 𝑗

=
𝑘𝐵𝑇

Ω 𝑓

{[
log (1 − 𝜙) + 𝜙 + 𝜙2𝜒 − 𝜙2(1 − 𝜙) 𝜕𝜒

𝜕𝜙
− 𝜙

Ω

]
𝛿𝑖 𝑗 +

𝜙

Ω𝜙
2/3
00

F𝑖𝑘F 𝑗𝑘

}
, (2.13)248

whereΩ = Ω𝑝/Ω 𝑓 represents the volume of polymer molecules relative to solvent molecules.249
Using the expansion of equation (2.2) and the deviatoric strain expression (2.4),250

F𝑖𝑘F 𝑗𝑘 =

(
𝜙

𝜙00

)−2/3
𝛿𝑖 𝑗 +

2𝜙00
𝜙
𝜖𝑖 𝑗 , (2.14)251

and so the two temperature-dependent material parameters are252

Π(𝜙) = 𝑘𝐵𝑇

Ω 𝑓

[
Ω−1

(
𝜙 − 𝜙1/3

)
− 𝜙 − log (1 − 𝜙) − 𝜙2𝜒 + 𝜙2(1 − 𝜙) 𝜕𝜒

𝜕𝜙

]
and (2.15a)253

𝜇𝑠 (𝜙) =
𝑘𝐵𝑇𝜙

1/3
00

Ω𝑝

. (2.15b)254

Notice that the shear modulus is independent of polymer fraction, and increases with255
temperature and chain length (longer polymer chains have a larger Ω𝑝). The temperature-256
dependence of the osmotic pressure is more complicated, with contributions from the 𝑘𝐵𝑇257
prefactor, 𝜒, and 𝜕𝜒/𝜕𝜙 .258

2.2. Equilibrium polymer fraction259

As discussed above, the equilibrium polymer fraction 𝜙0(𝑇) is found by setting the osmotic260
pressure (2.15a) to zero. In the present study, we follow Butler & Montenegro-Johnson261
(2022) in specifying an interaction parameter that depends linearly on both 𝜙 and 𝑇 ,262

𝜒(𝜙, 𝑇) = 𝐴0 + 𝐵0𝑇 + (𝐴1 + 𝐵1𝑇)𝜙, (2.16)263

where the four parameters can be fitted to existing models in the literature. Here, we consider264
two example models – the first is based on Afroze et al. (2000) (ANB), and the second is265
based on Hirotsu et al. (1987) and henceforth referred to as HHT. The fitting parameters, as266
found in Butler & Montenegro-Johnson (2022), are summarised in table 1.267

To find the equilibrium polymer fraction, we consider the expression268

Ω−1
(
𝜙0 − 𝜙1/3

0

)
− 𝜙0 − log (1 − 𝜙0) − 𝜙2

0 [𝐴0 + 𝐵0𝑇 + (2𝜙0 − 1) (𝐴1 + 𝐵1𝑇)] = 0, (2.17)269

for the two choices of parameters, and figure 2 shows the variation of 𝜙0 with temperature270
in both the ANB and HHT parameter sets. In the case of the parameters of Afroze et al.271
(2000), it is especially apparent that there are two critical temperatures. As the temperature272
is lowered from around 310 K, and the equilibrium polymer fraction 𝜙0 decreases (swelling),273

there is a rapid increase in swelling at 𝑇↑
𝐶

≈ 304.5 K, the swelling critical temperature.274
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Model 𝐴0 𝐴1 𝐵0 𝐵1 Ω

ANB (Afroze et al. 2000) −12.947 17.92 0.04496 K−1 −0.0569 K−1 100
HHT (Hirotsu et al. 1987) −62.22 −58.28 0.20470 K−1 0.19044 K−1 720

Table 1: Fitted parameter values for the two thermo-responsive hydrogels considered in
Butler & Montenegro-Johnson (2022), based on two pre-existing models from the

literature.

300 305 310 315
0

0.2

0.4

0.6

0.8

1

𝑇
↑
𝐶

𝑇
↓
𝐶

ANB

𝑇
↓
𝐶

≈ 𝑇↑
𝐶

HHT

𝑇

𝜙
0(
𝑇
)

Figure 2: Plots of the equilibrium polymer fraction, determined by Π(𝜙0) = 0 in equation
(2.17). Two choices of parameter values are plotted; those determined by Afroze et al.
(2000) (ANB) and Hirotsu et al. (1987) (HHT), showing the volume phase transition

temperatures for swelling (𝑇↑
𝐶

) and shrinking (𝑇↓
𝐶

), respectively.

As the temperature is increased from around 300 K, however, there is a different critical275

temperature, 𝑇↓
𝐶
≈ 306 K at which there is rapid drying. This hysteresis is in fact exhibited276

in the case of both sets of parameters, where there are multiple solutions in a narrow band277
of temperatures around the critical volume phase transition temperature 𝑇𝐶 , an effect which278
we ignore in the present study, modelling the equilibrium polymer fraction as single-valued279
at any temperature.280

In the low-temperature (i.e. swollen) states, we further assume that 𝜙0 ≪ 1, so the leading-281
order balance of equation (2.17) is282

𝜙0 ≈
[
Ω

(
1
2
− (𝐴0 − 𝐴1) − (𝐵0 − 𝐵1)𝑇

)]−3/5
, (2.18)283

equal to the classical approximation in gels that are not thermo-responsive (Doi 2009; Webber284
& Worster 2023). In both of the models, this gives 𝜙0 ∼ 0.01 for sufficiently low temperatures,285
but there is a singularity at286

𝑇 =
1 − 2(𝐴0 − 𝐴1)

2(𝐵0 − 𝐵1)
, (2.19)287

where the assumption of small polymer fraction can no longer be applied, corresponding to288
approximately 308 K in the ANB model and 311 K in the HHT model. This is close to the289
measured critical temperatures at which the affinity for water molecules drops rapidly and290
the gel dries out, 𝑇𝐶 (equal to around 305 K and 307.6 K in the two cases, respectively).291
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In the present study, we only wish to capture the rapid qualitative difference in the292
equilibrium polymer fraction 𝜙0(𝑇) around some critical temperature 𝑇𝐶 , and so we fit293
a simpler expression for 𝜙0(𝑇) onto the full predictions of our model. To achieve this, we294
take295

𝜙0(𝑇) =
{
𝜙00 𝑇 < 𝑇𝐶

𝜙0∞ 𝑇 > 𝑇𝐶
, (2.20)296

where 𝜙00 = 𝜙0(0) and 𝜙0∞ = lim𝑇→∞ 𝜙0(𝑇). Since we are not especially interested in the297

phenomena associated with the multivalued nature of 𝜙0(𝑇) (and thus cases where 𝑇↑
𝐶
≠ 𝑇

↓
𝐶

,298
we will use the Hirotsu et al. (1987) (HHT) parameters from now on, and can use Matlab’s299
lsqnonlin to fit the parameters†300

𝜙00 = 0.02552, 𝜙0∞ = 0.9944, and 𝑇𝐶 = 307.9 K. (2.21)301

2.3. Linearised osmotic pressure302

We further make the simplifying assumption, as employed for example by Doi (2009) and303
Webber & Worster (2023), that the osmotic pressure is a linear function of 𝜙 at a fixed value304
of 𝑇 , and thus that305

Π(𝜙, 𝑇) = Π0(𝑇)
𝜙 − 𝜙0(𝑇)
𝜙0(𝑇)

with Π0(𝑇) = 𝜙0(𝑇)
𝜕Π

𝜕𝜙

����
𝜙=𝜙0 (𝑇 )

. (2.22)306

This allows us to incorporate qualitative effects of temperature response without introducing307
an analytically-complicated model, and is equivalent to assuming that the polymer fraction308
is everywhere close to the local equilibrium value 𝜙0(𝑇). From this starting point, we can309
also introduce an osmotic modulus 𝐾 (𝜙, 𝑇) defined by310

𝐾 (𝜙, 𝑇) = 𝜙𝜕Π
𝜕𝜙

=
Π0(𝑇)𝜙
𝜙0(𝑇)

. (2.23)311

Using the simplified form of 𝜙0 introduced in equation (2.20), equations (2.22) and (2.23)312
become313

Π(𝜙, 𝑇) =


Π00

𝜙 − 𝜙00
𝜙00

𝑇 < 𝑇𝐶

Π0∞
𝜙 − 𝜙0∞
𝜙0∞

𝑇 > 𝑇𝐶

and 𝐾 (𝜙, 𝑇) =


Π00𝜙

𝜙00
𝑇 < 𝑇𝐶

Π0∞𝜙

𝜙0∞
𝑇 > 𝑇𝐶

. (2.24)314

2.4. Swelling and drying of gel spheres315

As a first example of the effect of changing the temperature on the composition of a hydrogel,316
consider a sphere of gel at equilibrium at some temperature 𝑇 ≪ 𝑇𝐶 in water. Within the317
bead of radius 𝑎0, the polymer fraction will be a uniform 𝜙00. If the temperature is raised318
above 𝑇𝐶 , as was investigated by Butler & Montenegro-Johnson (2022), the sphere will dry319
rapidly owing to osmotic effects, following the (spherically-symmetric) advection-diffusion320
equation of equation (2.7),321

𝜕𝜙

𝜕𝑡
+ 𝑞𝑟

𝜕𝜙

𝜕𝑟
=

1
𝑟2

𝜕

𝜕𝑟

[
𝑟2𝐷 (𝜙) 𝜕𝜙

𝜕𝑟

]
, (2.25)322

† The model parameters proposed by Afroze et al. (2000) (ANB) result in the fitting parameters
𝜙00 = 0.03789, 𝜙0∞ = 0.8099 and 𝑇𝐶 = 305.8 K, but the multivalued equilibrium curve is clearly not
captured here.



10

with 𝑞𝑟 ≡ 0, since the phase-averaged flux is solenoidal and equal to zero at the origin.323
Conservation of polymer sets the evolution of the sphere radius, with324

4𝜋
∫ 𝑎 (𝑡 )

0
𝑟2𝜙 d𝑟 =

4𝜋
3
𝑎3

0𝜙00, (2.26)325

which can be differentiated with respect to time, substituting from equation (2.25) for 𝜕𝜙/𝜕𝑡326
to find327

d𝑎
d𝑡

= − 𝐷 (𝜙)
𝜙

𝜕𝜙

𝜕𝑟

����
𝑟=𝑎 (𝑡 )

. (2.27)328

In order to validate our approach against Butler & Montenegro-Johnson (2022), we match329
model assumptions for the drying sphere case. Thus, we consider constant permeability 𝑘 ,330
take 𝜇𝑠 to have the form of equation (2.15b), and finally we relax the assumption of linear331
osmotic pressure (so as to better compare with the fully nonlinear results of other authors).332
These conditions imply that333

𝐷 (𝜙) = 𝑘𝑘𝐵𝑇

𝜇𝑙Ω 𝑓

{
𝜙 − 𝜙1/3/3

Ω
+ 𝜙2

1 − 𝜙 + 2𝜙2
[
𝜒 + (1 − 2𝜙) 𝜕𝜒

𝜕𝜙

]
+ 4𝜙1/3

3Ω

}
. (2.28)334

The polymer fraction 𝜙1 at the gel–water interface 𝑟 = 𝑎(𝑡) is set through taking continuity335
of pervadic pressure and normal stress. As in Webber & Worster (2023), this gives336

Π(𝜙1) = 4𝜇𝑠

[
𝑎0
𝑎(𝑡) −

(
𝜙1
𝜙00

)1/3
]
. (2.29)337

Making the scalings Φ = 𝜙/𝜙00, 𝐴 = 𝑎/𝑎0, 𝑅 = 𝑟/𝑎0 and 𝜏 = 𝑘𝑘𝐵𝑇𝑡/𝜇𝑙Ω 𝑓 𝑎
2
0, the non-338

dimensional diffusivity is339

D =
𝜙 − 𝜙1/3/3

Ω
+ 𝜙2

1 − 𝜙 + 2𝜙2
[
𝜒 + (1 − 2𝜙) 𝜕𝜒

𝜕𝜙

]
+ 4𝜙1/3

3Ω
(2.30)340

and the subsequent drying of the sphere is described by341

𝜕Φ

𝜕𝜏
=

1
𝑅2

𝜕

𝜕𝑅

[
𝑅2D(Φ) 𝜕Φ

𝜕𝑅

]
with Φ(𝑅, 0) = 1, 𝐴(0) = 1,

𝜕Φ

𝜕𝑅

����
𝑅=0

= 0, (2.31a)342

𝜙1 − 𝜙1/3
1

Ω
− 𝜙1 − ln (1 − 𝜙1) − 𝜙2

1𝜒 + 𝜙2
1(1 − 𝜙1)

𝜕𝜒

𝜕𝜙
=

4𝜙1/3
00

3Ω

[
𝐴−1 −

(
𝜙1
𝜙00

)1/3
]
, (2.31b)343

d𝐴
d𝜏

= − D(Φ)
Φ

𝜕Φ

𝜕𝑅

����
𝑅=𝐴(𝜏 )

, (2.31c)344

where Φ(𝐴, 𝜏) = 𝜙1/𝜙00. The Neumann boundary condition at 𝑅 = 0 arises from no345
radial flow at the origin, whilst the final condition for d𝐴/d𝜏 is a non-dimensionalisation of346
equation (2.27).347

In order to compare our model’s predictions with those of the full nonlinear problem, we348
reproduce the swelling and drying problems of figures 8, 9 and 10 in Butler & Montenegro-349
Johnson (2022), where the temperature is varied around the critical temperature. Taking350
𝜙00 = 𝜙0(304 K), remark that351

𝜙00 = 5.227 × 10−2 and 𝜏 =
Ω 𝑡𝐵𝑀𝐽

𝜙
2/3
00

= 100.7 𝑡𝐵𝑀𝐽 , (2.32)352

where 𝑡𝐵𝑀𝐽 is the dimensionless time used by Butler & Montenegro-Johnson (2022). The353

Rapids articles must not exceed this page length
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(a) Swelling dynamics
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(b) Polymer fraction evolution
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Figure 3: Plots illustrating the swelling of a hydrogel bead after the temperature is lowered
from 308 K to 304 K at 𝜏 = 0. The parameters used are the same as in Butler &

Montenegro-Johnson (2022), with the fully nonlinear results plotted for comparison. On
the left, the evolving polymer fraction is shown with the growth of the radius in the fully

nonlinear model shown as a red curve. On the right, porosity profiles are shown at
𝑡𝐵𝑀𝐽 = 0.0001, 0.0002, 0.0005, 0.001, 0.0025, 0.01, 0.05, 0.1, 0.2, 0.5 and 1, with

darker blue representing later times. Results from the fully nonlinear model are shown as
dashed lines.

radial variable, 𝑟𝐵𝑀𝐽 , is scaled with the dry radius of the sphere, and is therefore given by354
𝑟𝐵𝑀𝐽 ≈ 2.674𝑅.355

We first compare the swelling behaviour of a gel with the HHT parameters that is initially356
in equilibrium at 𝑇 = 308 K before being rapidly brought into surroundings at temperature357
𝑇 = 304 K, swelling from an initial polymer fraction 𝜙0(308 K) = 0.6425 to 𝜙00 smoothly358
throughout. Figure 3 illustrates good quantitative and qualitative agreement with the results359
of Butler & Montenegro-Johnson (2022), with marginally slower growth of the radius but360
the same diffusive transport of water from the surroundings into the core of the gel. To361
understand any differences between the two models, we can recast the full nonlinear model362
in our variables, and compare expressions for D and the boundary conditions to find sources363
of discrepancy. In appendix B, we show that the rate of change of polymer fraction in time is364
lower in the LENS model than in the fully-nonlinear approach when 𝜕𝜙/𝜕𝑟 < 0, explaining365
why the approach to the steady swollen state is slightly slower in our model than that seen366
by Butler & Montenegro-Johnson (2022).367

Repeating this analysis for the drying of a bead, we consider the case of smooth drying368
where there is no formation of a drying front (a feature that we will discuss in more369
depth below). Raising the temperature from 𝑇 = 304 K to 307.6 K, the plots in figure 4370
illustrate good agreement with the fully-nonlinear solution, but faster drying in the LENS371
approach. Again, this can be expected from considering the analysis in appendix B, with372
faster polymer fraction evolution for drying, and an altogether similar interfacial polymer373
fraction between the two models at 𝑇 = 307.6 K. There is a more significant discrepancy374
between the predictions of LENS and the fully-nonlinear model in this case owing to the larger375
polymer fraction gradients present at around 𝑡𝐵𝑀𝐽 = 5. Importantly, this model also captures376
the particular drying trajectory featuring fast drying at early times and between 𝑡𝐵𝑀𝐽 = 5377
and 𝑡𝐵𝑀𝐽 = 6, and slow drying in a plateau region 2 ⩽ 𝑡𝐵𝑀𝐽 ⩽ 5. This occurs since the378
solution approaches regions of parameter space where we may expect phase separation, and379
the presence of a nearby equilibrium solution gives a critical slow-down behaviour akin to380
that discussed by Gomez et al. (2017).381
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(a) Shrinking dynamics
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(b) Polymer fraction evolution
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Figure 4: Plots illustrating the drying of a hydrogel bead after the temperature is raised
from 304 K to 307.6 K at 𝜏 = 0, with the HHT parameters as before and the fully

nonlinear solution plotted for comparison. On the left, the evolving porosity is shown with
the growth of the radius in the fully nonlinear model shown as a red curve. On the right,

porosity profiles are shown at 𝑡𝐵𝑀𝐽 = 0, 1, 2, 3, 4, 5, 6, 7 and 8, with darker blue
representing later times. Results from the fully nonlinear model are shown as dashed lines.

This phase separation, where shrunken and swollen states can locally coexist with a sharp382
front in between, is one of the key phenomena investigated by Butler & Montenegro-Johnson383
(2022). Often during the deswelling process a sharp drying front forms, travelling radially384
inwards through the bead, with the exterior rapidly drying to its final state and the interior385
remaining relatively swollen until the front reaches the centre. This occurs when trajectories386
in (𝑇, 𝜙)-space pass through the spinodal or coexistence regions. In the spinodal region,387
spontaneous phase separation can occur, with the formation of regions of dried polymer388
surrounded by swollen gel or vice versa as the system equilibrates. The coexistence region389
is a special case of this, where a dried gel and a swollen one can coexist in thermodynamic390
equilibrium with a simple sharp boundary (such as a drying front) separating the two. In the391
present study, we consider both of these effects to be forms of spinodal decomposition, with392
coexistence a weaker ‘local’ form. In either case, there are sharp differences in 𝜙 across very393
short distances.394

Since large gradients in polymer fraction lead to large deviatoric strains, we expect that395
our model is unlikely to capture the dynamics of these sharp fronts exactly, since it is396
dependent on the assumption that these strains remain small. Attempting to replicate this397
behaviour regardless, through raising the temperature from 304 K to 308 K, shows that the398
polymer diffusivity is, in fact, negative for such a case in our model. This leads to spinodal399
decomposition, with 𝐷 (𝜙) < 0, i.e.400

𝜙 − 𝜙1/3/3
Ω

+ 𝜙2

1 − 𝜙 + 2𝜙2
[
𝜒 + (1 − 2𝜙) 𝜕𝜒

𝜕𝜙

]
+ 4𝜙1/3

3Ω
< 0 (2.33)401

the criterion for such behaviour to occur. Figure 5 shows the trajectory of swelling and drying402
problems in (𝑇, 𝜙)-space, making it clear why swelling (when the temperature is lowered)403
never leads to negative diffusivities, and why some drying can occur (such as that of figure 4)404
without entering the spinodal region. In the remainder of this paper, we will consider cases405
of smooth drying where phase separation does not occur.406
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Figure 5: A plot of the region in (𝑇, 𝜙)-space where the polymer diffusivity is negative
(spinodal region), alongside the equilibrium polymer fraction 𝜙0 (𝑇). The smooth swelling

problem of figure 3 is plotted in blue, with the temperature lowered and the spinodal
region never approached, and the smooth drying of figure 4 is plotted in yellow. Phase
separation occurs when the temperature is raised to 308 K and the path to equilibrium

passes through the spinodal region, as shown in the example green trajectory.

3. Response times and flow in thermo-responsive tubes407

The analysis presented in section 2.4 illustrates how the response time for a gel to a change408
in the local temperature is set by the poroelastic timescale for the gel. In the plots of figure 3,409
we see that a swelling sphere only attains its final radius at a time 𝑂 (𝜇𝑙𝑎2

0/𝑘Π0∞) after the410
temperature has been changed. In general, these timescales are slow, of the order of many411
hours for most macroscopic gels of interest (Webber & Worster 2023), since the response is412
rate-limited by the permeability 𝑘 , typically of the order 10−15 m2 or smaller (Etzold et al.413
2021).414

In general, scaling the terms in equation (2.7) shows that the poroelastic timescale 𝑡pore is415
given in an arbitrary geometry by416

𝑡pore ∼
𝜇𝑙𝐿

2

𝑘Π0∞
, (3.1)417

where 𝐿 is a lengthscale for the problem. If the physical situation we are modelling has a418
fixed size 𝐿, we seek an approach to lower the poroelastic timescale for fixed 𝐿 so that the419
gel reacts more quickly. Recently, a new class of microfluidic actuators have been designed,420
reliant on simple geometric designs to convert the isotropic shrinkage of hydrogels above the421
LCST threshold into more complicated anisotropic morphological changes (Maslen et al.422
2023). Even at the micrometre-scale, these devices take a number of seconds to pass through423
a single actuation cycle, and with deswelling times scaling like 𝐿2, centimetre- or millimetre-424
scale devices harnessing the same physics can be expected to take many hours to achieve the425
same shape changes. This currently confines such applications to microfluidics, whilst an426
approach that lowers the response times could find applications in actuators or soft robotics427
on the macroscopic scale.428

Concurrently, a number of recent advances in microfluidics have harnessed the ability of429
hydrogels to pump fluid, either passively through their hydrophilic nature (Dong & Jiang430
2007), or through the use of responsive hydrogels to drive peristaltic flows (Richter et al.431
2009). In this latter case, fluid flows many orders of magnitude faster than the percolating432
flow through the gel matrix can be achieved by squeezing water through microscale voids in433
the structure.434

In this section, we consider the simple case of a tube of thermo-responsive hydrogel435
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𝑧 = 0

𝑎1

𝑎0

𝑏1 (𝑧, 𝑡)

𝑏0 (𝑧, 𝑡)

Figure 6: A diagram illustrating the tube of hydrogel in the space 𝑏0 < 𝑟 < 𝑏1 with a
hollow lumen inside. Note that 𝑏1 = 𝑎1 and 𝑏0 = 𝑎0 at 𝑧 = 0, and symmetry at this point

implies that we need only solve the problem in 0 < 𝑧 < ∞.

surrounded by (and filled with) bulk water, occupying the region 𝑎0 < 𝑟 < 𝑎1 when 𝑇 < 𝑇𝐶 ,436
with uniform polymer fraction 𝜙00. When the temperature is brought above the critical437
value, the gel will dry, leading to a shrinkage of the tube, and the expulsion of water. This438
water can be expelled radially out of the tube, carried (slowly) through the gel parallel to439
the axis, or can be transported axially in the lumen of the tube. Though the deswelling440
response to the temperature change is still governed by the poroelastic timescale, the tube441
can be manufactured to be sufficiently thin that shrinkage is rapid, and bulk water can be442
transported much more rapidly through the hollow lumen than would otherwise be the case443
for a solid cylinder (as in the case investigated by Webber et al. (2023)), such that the gel444
device acts like a small-scale displacement pump, reacting on a much faster timescale.445

3.1. Model problem446

Consider an infinite tube formed from thermo-responsive gel, with an initial thickness 𝑎1−𝑎0.447
Initially, the temperature is 𝑇𝐶 − Δ𝑇 , but for 𝑡 ⩾ 0 a temperature 𝑇 = 𝑇𝐶 + Δ𝑇 is imposed448
at 𝑧 = 0, and the tube deswells as the heat pulse spreads out diffusively in time. We make449
the simplifying assumption that the thermal properties of water and hydrogel are sufficiently450
similar, and that any flows are negligible from a thermodynamic point of view such that all451
heat transfer is diffusive, and restrict our attention to 𝑧 ⩾ 0 by symmetry around 𝑧 = 0. Then,452
the temperature field satisfies453

𝜕𝑇

𝜕𝑡
= 𝜅

𝜕2𝑇

𝜕𝑧2 with 𝑇 (0, 𝑡) = 𝑇𝐶 + Δ𝑇 and
𝜕𝑇

𝜕𝑧
→ 0 as 𝑧 → ∞, (3.2)454

for 𝜅 the thermal diffusivity. The second boundary condition arises from the assumption of455
no heat flux at infinity. Equation (3.2) has a solution in terms of the error function, with456

𝑇 − 𝑇𝐶 = Δ𝑇

[
2 erfc

(
𝑧

2
√
𝜅𝑡

)
− 1

]
, (3.3)457

where erfc is the complementary error function (Abramowitz & Stegun 1970). In response458
to the change in temperature, water is expelled from the hydrogel and the shape of the tube459
is described by 𝑏0(𝑧, 𝑡) < 𝑟 < 𝑏1(𝑧, 𝑡), as illustrated in figure 6. In order to simplify the460
analysis that follows, we assume that there is no spinodal decomposition and that the osmotic461
pressure can be accurately described by the linear form of equation (2.24), for polymer462
fractions that remain close to 𝜙0(𝑇) throughout. There is no consensus on the exact form463
that Π(𝜙) should take, with some recent research suggesting that a power-law dependence464
on polymer fraction (at least for the mixing contribution) leads to better agreement with465
experimental measurements than classical Flory-Huggins theory (Feng et al. 2024). Appendix466
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C compares some results from Butler & Montenegro-Johnson (2022) with those obtained467
using a linearised osmotic pressure, showing good qualitative, if not quantitative, agreement.468
While, all of the following analysis could be repeated with more complicated expressions for469
Π(𝜙), if necessary, we have opted for the simpler form to facilitate analytical insight.470

3.1.1. Deformation of the tube471

As a first model, assume that all deformation is locally isotropic, and that deswelling leads to472
a displacement field (relative to the initial state) with axial component 𝜂 and radial component473
𝜉 given by474

𝜉

𝑟
≈ 𝜕𝜉

𝜕𝑟
≈ 𝜕𝜂

𝜕𝑧
≈ 1 −

(
𝜙

𝜙00

)1/3
. (3.4)475

Making this assumption requires the polymer fraction field to be independent of 𝑟 at leading476
order, an assumption that is reasonable to make in the slender limit of a tube with much477
larger horizontal lengthscale than diameter. Since we expect 𝜉 = 0 at 𝑟 = 0 (in the limit of478
no lumen) and 𝜂 = 0 at 𝑧 = 0, the leading-order displacement field is479

𝜉 =

[
1 −

(
𝜙

𝜙00

)1/3
]
𝑟 and 𝜂 =

∫ 𝑧

0

[
1 −

(
𝜙

𝜙00

)1/3
]

d𝑢. (3.5)480

Using the expression above for 𝜉 allows us to write481

𝑏0
𝑎0

≈ 𝑏1
𝑎1

≈
(
𝜙

𝜙00

)−1/3
, (3.6)482

and so the local thickness of the tube is proportional to 𝜙−1/3. In order to quantify this483
deformation as a result of deswelling, we must first understand how the polymer fraction484
changes in response to temperature changes.485

3.1.2. Polymer fraction evolution486

To describe the evolution of polymer fraction in time as the gel expels water, equation (2.7)487
becomes488

𝜕𝜙

𝜕𝑡
+ 𝒒 · ∇𝜙 =

1
𝑟

𝜕

𝜕𝑟

[
𝑟𝐷 (𝜙,𝑇) 𝜕𝜙

𝜕𝑟

]
+ 𝜕

𝜕𝑧

[
𝐷 (𝜙,𝑇) 𝜕𝜙

𝜕𝑧

]
with489

𝐷 (𝜙,𝑇) = 𝑘

𝜇𝑙

[
Π0(𝑇)𝜙
𝜙0(𝑇)

+ 4𝜇𝑠
3

(
𝜙

𝜙00

)1/3
]
, (3.7)490

again making the assumption of constant permeability and shear modulus. In order to simplify491
the analysis, we make a slenderness assumption that the characteristic axial lengthscale 𝐿 is492
much greater than the characteristic radial lengthscale 𝑎1. Define 𝜀 = 𝑎1/𝐿, and assume that493
the polymer fraction field only has leading-order axial variation, with radial differences in494
polymer fraction being of the order 𝛿 ≪ 1 (arising from our assumption of local isotropy),495

𝜙 = 𝜙1(𝑧, 𝑡) + 𝛿𝜙2(𝑟, 𝑧, 𝑡). (3.8)496

We define 𝜙1 to be the polymer fraction on 𝑟 = 𝑏0(𝑧, 𝑡) with 𝜙2 the radial structure function497
equal to zero on 𝑟 = 𝑏0. Plugging this into the evolution equation above allows us to separate498
variables and deduce that 𝛿 = 𝜀2. Therefore, we need only make a relatively weak slenderness499
assumption, since it is 𝜀2 that must be small and not 𝜀 itself, making this model applicable500
for relatively stout tubes.501
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If we let 𝑍 = 𝑧/𝐿 and 𝑅 = 𝑟/𝑎1, the leading-order balance of equation (3.7) is502

𝐿2 𝜕𝜙1
𝜕𝑡

+ 𝐿𝑞𝑧
𝜕𝜙1
𝜕𝑍

=
1
𝑅

𝜕

𝜕𝑅

[
𝑅𝐷 (𝜙1, 𝑇)

𝜕𝜙2
𝜕𝑅

]
+ 𝜕

𝜕𝑍

[
𝐷 (𝜙1, 𝑇)

𝜕𝜙1
𝜕𝑍

]
, (3.9)503

since the material flux 𝒒 = 𝑞𝑟 𝒓 + 𝑞𝑧 𝒛 is solenoidal and thus 𝑞𝑟/𝑎1 ∼ 𝑞𝑧/𝐿. This motivates a504
non-dimensionalisation,505

𝐵0 =
𝑏0
𝑎1
, 𝐵1 =

𝑏1
𝑎1
, 𝜏 =

𝑘Π00𝑡

𝜇𝑙𝐿
2 , 𝑄 =

𝜇𝑙𝐿𝑞𝑧

𝑘Π00
, Φ1, 2,∞ =

𝜙1, 2, 0∞
𝜙00

, M =
𝜇𝑠

Π00
. (3.10)506

We also define a non-dimensional diffusivity, arising from the linear osmotic pressure (2.24),507

D(Φ1, 𝑇) =


Φ1 +

4M
3

Φ
1/3
1 𝑇 < 𝑇𝐶

Π0∞
Π00

Φ1
Φ∞

+ 4M
3

Φ
1/3
1 𝑇 > 𝑇𝐶

. (3.11)508

Then, finally, the evolution equation governing the tube is509

𝜕Φ1
𝜕𝜏

+𝑄𝜕Φ1
𝜕𝑍

=
1
𝑅

𝜕

𝜕𝑅

[
𝑅D(Φ1, 𝑇)

𝜕Φ2
𝜕𝑅

]
+ 𝜕

𝜕𝑍

[
D(Φ1, 𝑇)

𝜕Φ1
𝜕𝑍

]
, (3.12)510

to be solved subject to Φ1 ≡ 1 at 𝜏 = 0, 𝜕Φ1/𝜕𝑍 = 0 at 𝑍 = 0 (by symmetry) and511
𝜕Φ1/𝜕𝑍 → 0 as 𝑍 → ∞. Using equations (2.8) and (3.5), we find the non-dimensional flux512
to be513

𝑄 =
D(Φ1, 𝑇)

Φ1

𝜕Φ1
𝜕𝑍

+Φ
−1/3
1

𝜕 (𝜂/𝐿)
𝜕𝜏

514

=
D(Φ1, 𝑇)

Φ1

𝜕Φ1
𝜕𝑍

−
Φ

−1/3
1
3

∫ 𝑍

0
Φ

−2/3
1

𝜕Φ1
𝜕𝜏

d𝑢. (3.13)515

3.1.3. Radial structure of the tube516

Separating variables for Φ2 in the partial differential equation (3.12),517

1
𝑅

𝜕

𝜕𝑅

[
𝑅D(Φ1, 𝑇)

𝜕Φ2
𝜕𝑅

]
= 𝑓 (𝑍, 𝑇, 𝜏), (3.14)518

with Φ2 = 0 on 𝑅 = 𝐵0 = (𝑎0/𝑎1)Φ−1/3
1 by definition. Hence,519

Φ2 =
𝑓 (𝑍, 𝑇, 𝜏)𝑅2

4D(Φ1, 𝑇)
+ 𝑔(𝑍, 𝑇, 𝜏) log 𝑅 + ℎ(𝑍, 𝑇, 𝜏). (3.15)520

Without loss of generality, we can absorb the term ℎ into Φ1, since it does not depend on 𝑅,521
and determine 𝑔 from boundary conditions at the inner tube–water interface 𝑅 = 𝐵0, where522

Φ2 = 0. Letting 𝑎0/𝑎1 be denoted by ℓ < 1, 𝐵0 = ℓΦ
−1/3
1 and523

Φ2 =
𝑓 (𝑍, 𝑇, 𝜏)

4D(Φ1, 𝑇)

[
𝑅2 −

ℓ2Φ
−2/3
1

log ℓ − (logΦ1) /3
log 𝑅

]
. (3.16)524

At the outermost interface 𝑅 = 𝐵1, the pervadic pressure is taken, without loss of generality,525
to be zero, since this quantity is continuous across the material boundary. Requiring no radial526
stress here (𝜎𝑟𝑟 = 0) therefore reduces to requiring that osmotic pressures are balanced by527
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shear, and528

Π(𝜙1 + 𝜀2𝜙2) = 2𝜇𝑠

[
𝜕𝜉

𝜕𝑟
− 1 +

(
𝜙

𝜙00

)1/3
]
= 0. (3.17)529

This imposes Φ = Φ0(𝑇) on 𝑅 = 𝐵1, or that the polymer fraction here equals the equilibrium530
value. Therefore,531

𝑓 (𝑍, 𝑇, 𝜏) =
4Φ2/3

1 D(Φ1, 𝑇)
𝜀2

3 log ℓ − logΦ1

3 log ℓ − (1 − ℓ2) logΦ1
[Φ0(𝑇) −Φ1] , (3.18)532

implying that, for our model to be consistent, Φ1 must everywhere be close to the piecewise-533
constant equilibrium polymer fraction Φ0, or else our scaling arguments for the terms in the534
advection-diffusion equation will be invalid. We can check this assumption after calculating535
the solution to verify the validity of our modelling.536

3.1.4. Model summary537

In order to understand the response of the gel to the diffusive heat pulse, we first seek the538
position of the drying front 𝑧 = 𝑧𝐶 where 𝑇 = 𝑇𝐶 . This is found using equation (3.3), with539

erfc
(
𝑧𝐶

2
√
𝜅𝑡

)
=

1
2

so 𝑧𝐶 = 2 erfc-1
(

1
2

)√
𝜅𝑡 ≈ 0.9539

√
𝜅𝑡. (3.19)540

We introduce a Lewis number, the ratio of thermal to compositional diffusivities, defined541
by 𝐿𝑒 = 𝜇𝑙𝜅/𝑘Π00, such that this drying front can now be described in non-dimensional542
variables,543

𝑍𝐶 (𝜏) = 2
√
𝐿𝑒 erfc-1

(
1
2

)
𝜏1/2. (3.20)544

Then,545

𝜕Φ1
𝜕𝜏

+ D
Φ1

(
𝜕Φ1
𝜕𝑍

)2
−
Φ

−1/3
1
3

𝜕Φ1
𝜕𝑍

∫ 𝑍

0
Φ

−2/3
1

𝜕Φ1
𝜕𝜏

d𝑢 = 𝑓 + 𝜕

𝜕𝑍

[
D 𝜕Φ1
𝜕𝑍

]
with546

D =


Π̃

Φ1
Φ∞

+ 4M
3

Φ
1/3
1 𝑍 < 𝑍𝐶

Φ1 +
4M

3
Φ

1/3
1 𝑍 > 𝑍𝐶

and547

𝑓 =
4Φ2/3

1 D
𝜀2

3 log ℓ − logΦ1

3 log ℓ − (1 − ℓ2) logΦ1
×

{
Φ∞ −Φ1 𝑍 < 𝑍𝐶

1 −Φ1 𝑍 > 𝑍𝐶
. (3.21)548

Here, Π̃ represents Π0∞/Π00. This is to be solved with the initial conditions Φ1 ≡ 1 and549
subject to boundary conditions 𝜕Φ1/𝜕𝑍 = 0 at 𝑍 = 0 and 𝜕Φ1/𝜕𝑍 → 0 as 𝑍 → ∞. From550
this solution, the shape of the gel can be deduced,551

ℓΦ
−1/3
1 ⩽ 𝑅 ⩽ Φ

−1/3
1 , (3.22)552

as well as the radial polymer fraction structure using equation (3.16).553

3.2. Response to uniform temperature change554

Before studying the response of a hollow tube to a propagating heat pulse, we first consider555
the case where the temperature is everywhere brought up to 𝑇𝐶 + Δ𝑇 . The response of the556
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Figure 7: Plots of the one-dimensional deswelling of a tube when the temperature is
uniformly changed when Φ∞ = 2 and 𝜀 = 0.1. This shows the variation of the deswelling
timescale 𝜏99 (the time taken for Φ1 ⩾ 1.99) and the approach to steady state for a number

of tube thicknesses.

tube is axially-uniform, evolving following a simplified form of equation (3.21),557

𝜕Φ1
𝜕𝜏

=
4(Φ∞ −Φ1)

𝜀2
3 log ℓ − logΦ1

3 log ℓ − (1 − ℓ2) logΦ1

(
Π̃
Φ

1/3
1

Φ∞
+ 4M

3
Φ1

)
. (3.23)558

We can use this equation to understand how the material parameters Φ∞, M and Π̃ affect559
the response time to a change in temperature without the added complication of spatial560
variations. We know that the polymer fraction on the inside of the tube will approach Φ∞ as561
time goes on, with the outside polymer fraction instantaneously reaching this value, but the562
rate at which this steady state is approached may vary. To measure the rate of deswelling,563
define the deswelling timescale 𝜏99 as the time taken for564

Φ1 ⩾ Φ∗ − Φ∗ − 1
100

. (3.24)565

Straightforwardly, it is clear that deswelling is more rapid when there is a greater contrast566
between 𝜙00 and 𝜙0∞, since the bracketed term Φ∞ −Φ1 is greater in magnitude. Thus, gels567
with more dramatic deswelling will reach their steady states faster. Figure 7a shows how the568
time taken to reach Φ∞ depends on the stiffness of the gel (encoded by M) and the strength of569
the osmotic pressure at higher temperatures (encoded by Π̃). Stiffer gels resist the formation570
of deviatoric strains, which arise from differences in polymer fraction, so the interior must571
deswell to catch up with the outside of the tube, leading to a much faster deswelling process572
as M increases. Similarly, larger values of Π̃ lead to more rapid interstitial flows driven by573
pervadic pressure gradients, and so the time to deswell decreases as Π̃ increases.574

Figure 7b illustrates the approach of the polymer fraction on the interior of the tube to575
the equilibrium value Φ∞, showing how the approach is more rapid for thinner tubes where576
there is a shorter distance for water to diffuse out. Even though the initial rate of drying is577
independent of ℓ (at 𝜏 = 0), at later times, drying is more rapid when ℓ → 1. Henceforth,578
we will use the parameter values of table 2 in all calculations unless otherwise specified, and579
only investigate the effect of varying tube thickness through ℓ.580
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Parameter Value
Deswollen scaled polymer fraction Φ∞ 2
Ratio of osmotic pressure scales Π̃ 1
Aspect ratio 𝜀 = 𝑎1/𝐿 0.1
Shear parameter M 1
Lewis number 𝐿𝑒 10

Table 2: Parameter values used in the modelling of drying tubes from section 3.3
onwards, with the effect of changing Φ∞, Π̃ and M discussed in section 3.2.
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Figure 8: Plots of the evolution of a hollow thermo-responsive hydrogel tube with
parameters from table 2 and ℓ = 0.5. The heat pulse diffuses from left to right, with the gel

shrinking behind it.

3.3. Flow response to heat pulses581

Using the model summarised in equation (3.21), we can compute the mechanisms by which a582
thermo-responsive gel tube will collapse in response to a heat pulse starting at 𝑍 = 0. Key to583
the behaviour here is the fact that heat diffuses on a faster timescale than the water can diffuse584
through the polymer, leading to a smooth front centred on the heat pulse. This corresponds to585
the 𝐿𝑒 ≫ 1 limit – using the approximate value Π00 ∼ 104 Pa (Webber & Worster 2023) and586
𝑘 ∼ 10−15 m2 (Etzold et al. 2021), it is found that 𝐿𝑒 ∼ 10 and the heat pulse is transported587
an order of magnitude faster than water through the pores. Figure 8 shows the thickness of a588
tube at different times as heat diffuses and the gel shrinks. Notice that the shrinkage, though589
rapid, is not instantaneous in time, since the slow diffusion of water out of the walls of the590
tube sets a delayed response.591

In order for the gel to deswell, water must flow from the walls of the tube into the592
surrounding water, the lumen at the centre of the tube, or through the gel itself parallel to593
the axis. Clearly, if the walls of the tube are thinner, driving water from the hydrogel is more594
rapid, since the water has less of a distance to diffuse outwards, and we expect a more rapid595
response to changes in temperature for larger values of ℓ. The more rapid approach to steady596
state is shown in figure 9a, where the sharper equilibrium profile is approached more closely597
around the drying front 𝑍𝐶 (𝜏) for thinner tube walls. Assuming that the radial fluxes are598
locally dominant, equation (3.21) reduces to the one-dimensional case of section 3.2,599

𝜕Φ1
𝜕𝜏

≈
4Φ2/3

1 D
𝜀2

3 log ℓ − logΦ1

3 log ℓ − (1 − ℓ2) logΦ1
×

{
Φ∞ −Φ1 𝑍 < 𝑍𝐶

1 −Φ1 𝑍 > 𝑍𝐶
, (3.25)600
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(a) Relaxation to the equilibrium
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Figure 9: Plots of the interior polymer fraction Φ1 at 𝜏 = 10−2 with the same parameters
as in figure 8, showing how the relaxation to the steady state Φ = Φ0 (𝑇) around the drying

front 𝑍 = 𝑍𝐶 (𝜏) is much faster for thinner tubes ℓ → 1. These profiles can be
approximated by a tanh function, as in equation (3.27), with fitting parameter 𝐴(ℓ) shown

in the logarithmic plot on the right.

away from the front at 𝑍 = 𝑍𝐶 (where 𝜕Φ1/𝜕𝑍 will be significant). Then, as ℓ → 1,601

𝜕Φ1
𝜕𝜏

→
4Φ2/3

1 D
𝜀2(1 − ℓ)

logΦ1
3 + 2 logΦ1

×
{
Φ∞ −Φ1 𝑍 < 𝑍𝐶

1 −Φ1 𝑍 > 𝑍𝐶
, (3.26)602

and timescales decrease like 1 − ℓ. In the opposite limit as ℓ → 0, adjustment happens on603
the unmodified poroelastic timescale.604

From figure 8, it is clear that the structure of the solution around 𝑍 = 𝑍𝐶 (𝜏) appears to605
propagate like a travelling wave centred on the deswelling front, since the contribution of606
axial flows through the gel is limited compared to that of radial flows. Therefore, we can607
consider the quasi-one-dimensional probelm in the new coordinate 𝑍 − 𝑍𝐶 . The plots in608
figure 9 suggest that polymer fraction can locally be approximated by a smooth step around609
𝑍 = 𝑍𝐶 (𝜏), with the steepness a function of thickness ℓ. We thus propose that610

Φ1 ≈ Φ∞ − Φ∞ − 1
2

{1 + tanh [𝐴(ℓ) (𝑍 − 𝑍𝐶)]} , (3.27)611

for some scaling factor 𝐴, a function of ℓ, representing the sharpness of the drying front.612
Figure 9 shows that 𝐴(ℓ) ∼ (1 − ℓ)−1/2, and therefore the thickness of the adjustment region613
around the front 𝑍 = 𝑍𝐶 (𝜏) scales like (1 − ℓ)1/2.614

3.3.1. Flow through the walls615

Flow in the walls of the tube is driven by diffusive transport of water from more swollen616
regions to drier regions, with an interstitial fluid velocity617

𝒖𝒈 =
𝐷 (𝜙)
𝜙

∇𝜙 =
𝑘Π00
𝜇𝑙

(
1
𝐿

𝜕Φ1
𝜕𝑍

𝒛 + 𝜀
2

𝑎1

𝜕Φ2
𝜕𝑅

𝒓

)
×


Π̃ + 4M

3
Φ

−2/3
1 𝑍 < 𝑍𝐶

1 + 4M
3

Φ
−2/3
1 𝑍 > 𝑍𝐶

, (3.28)618

at leading order in the aspect ratio. We define a dimensionless radial fluid velocity𝑈𝑔 scaled619
with 𝑎1 divided by the poroelastic timescale and an axial velocity 𝑉𝑔 scaled with 𝐿 divided620
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Figure 10: A plot at 𝜏 = 0.02 of a drying gel tube with the same parameters as in figure 8.
The colours represent the polymer fraction field, with arrows in the gel showing the

direction and magnitude of the interstitial flow field 𝒖𝒈 , as defined in equation (3.28). The
arrows along the centreline show the local magnitude of the parallel flow in the lumen, 𝑉 ,

derived from equation (3.32).
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Figure 11: Plots close to 𝑍 = 𝑍𝐶 (𝜏) when 𝜏 = 0.02, illustrating dominant radial flows
when the gel is thinner (ℓ = 0.9) versus the thicker (ℓ = 0.5) gel. In all other regards, the
parameters are the same as in figure 10. Notice the directional change either side of the

drying front.

by the same timescale, so that621

(
𝑉𝑔, 𝑈𝑔

)
=

(
𝜕Φ1
𝜕𝑍

,
𝜕Φ2
𝜕𝑅

)
×


Π̃ + 4M

3
Φ

−2/3
1 𝑍 < 𝑍𝐶 .

1 + 4M
3

Φ
−2/3
1 𝑍 > 𝑍𝐶 .

(3.29)622

Figure 10 illustrates an example flow field through the walls of the gel, with flow from more623
swollen to less swollen regions. In the dried region behind the temperature front, radial fluxes624
are outwards as water is driven out of the shrinking gel, with fluid transported axially towards625
the drier regions to the left. In 𝑍 > 𝑍𝐶 , however, fluxes are radially inwards. In order to626
understand why this is, notice that the gel is more swollen on its interior than exterior when627
𝑍 < 𝑍𝐶 (as the tube fully dries from the outside in) and more swollen on its exterior than628
interior when 𝑍 > 𝑍𝐶 (as the tube is fully swollen on 𝑅 = 𝐵1 with some loss of fluid in the629
interior due to axial fluxes towards the drier tube). Hence, there needs to be water drawn in630
from the surrounding fluid to replenish these regions.631

In general, therefore, the tube draws water inwards ahead of the deswelling front, and then632
expels the water behind this front. This is shown in detail in figure 11, where the dominance633
of radial fluxes in thinner gel layers is also clear.634
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Figure 12: Plots of the lumen flux 𝑉 as time progresses with ℓ = 0.5. Circles mark 𝑍𝐶 (𝜏)
and earlier times are lighter colours.

3.3.2. Flow in the lumen635

There is also transport of water in the lumen within the tube, which is much faster than636
the slow diffusion through the tube walls. Assuming that this transport occurs at a non-637
dimensional velocity 𝑉 (scaled with 𝐿 divided by the poroelastic timescale) parallel to the638
axis, we treat the flow through the pipe as cylindrical Poiseuille flow driven by gradients639
in the pervadic pressure. Imposing a zero radial stress condition at 𝑅 = 𝐵0, much as when640
seeking the interfacial boundary condition at 𝑅 = 𝐵1 in equation (3.17),641

𝑝 + Π(𝜙1) = 0 so
𝑝

Π00
=

{
Π̃ (Φ∗ −Φ1) 𝑍 < 𝑍𝐶 (𝜏)
1 −Φ1 𝑍 > 𝑍𝐶 (𝜏)

, (3.30)642

driving a flow from left to right with the heat pulse, with a dimensional average velocity (via643
the standard Hagen-Poiseuille flow law) in the tube lumen given by644

−
Π00𝑎

2
1ℓ

2Φ
−2/3
1

8𝜇𝑙𝐿
𝜕Φ1
𝜕𝑍

×
{
Π̃ 𝑍 < 𝑍𝐶 (𝜏)
1 𝑍 > 𝑍𝐶 (𝜏)

. (3.31)645

Non-dimensionalising,646

𝑉 = −𝜀
2𝐿2

𝑘

ℓ2Φ
−2/3
1
8

𝜕Φ1
𝜕𝑍

×
{
Π̃ 𝑍 < 𝑍𝐶 (𝜏)
1 𝑍 > 𝑍𝐶 (𝜏)

. (3.32)647

Even though this transport velocity is an order-𝜀2 quantity, the fact that 𝑘/𝐿2 ≪ 1 cancels648
out this effect, and we expect the flow to be significantly faster than the velocities in the gel,649
provided that 𝜀 ≫

√
𝑘/𝐿, equivalent to requiring 𝑎1 ≫

√
𝑘 . Since 𝑘 is of the order 10−15 m2650

or significantly smaller (Etzold et al. 2021), so this assumption is likely valid for all but651
nanoscale devices.652

Figure 12 shows how the fluid pulse is centred on the thermal front, with the characteristic653
pulse width straightforward to deduce from the fitted front model of equation (3.27). Near654
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Figure 13: Plots of the scaled lumen velocities, repeating the approach of figure 12 for
different values of ℓ, showing how the magnitude of the velocities is greater as ℓ is

increased, but that the fluxes are more spatially localised in these cases. In all plots, time
increases from the lighter to the darker curves.

𝑍 = 𝑍𝐶 ,655

𝑉 ≈ 𝜀2𝐿2

𝑘

ℓ2𝐴(ℓ)Φ−2/3
1

16
(Φ∗ − 1) sech2 [𝐴(ℓ) (𝑍 − 𝑍𝐶)] ×

{
Π̃ 𝑍 < 𝑍𝐶 (𝜏)
1 𝑍 > 𝑍𝐶 (𝜏)

, (3.33)656

describing a translating pulse of characteristic width 𝐴(ℓ)−1 and maximum velocity magni-657
tude658

𝑉max =
𝜀2𝐿2ℓ2𝐴(ℓ)

16𝑘

(
1 +Φ∗

2

)−2/3 1 + Π̃

2
. (3.34)659

Thus, for sufficiently small 1− ℓ, 𝑉max ∼ (1− ℓ)−1/2 and the pulse width ∼ (1− ℓ)1/2, and so660
the volume of fluid that can be transported by such a pumping action approaches a plateau661
as the tube gets thinner: even though transport is faster, the width of the pulse narrows. It662
is clear that increasing the lumen width both augments the transport capacity and response663
time to a heat pulse (up to a limit, since ℓ = 1 corresponds to no tube). Figure 13 illustrates664
this exact behaviour, showing shorter, sharper, lumen flux pulses as the tube thickness is665
decreased. At values of ℓ very close to 1, the precise form of the flow field around the very666
thin tube walls must be considered, and the continuum approximations used in our present667
approach are likely invalid, so the precise manner in which fluid velocities approach zero668
cannot be elucidated. Our model is, however, valid for most thicknesses where such effects669
can be neglected.670
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4. Conclusion671

Incorporating thermo-responsive effects into models of hydrogel swelling and drying can add672
a rich variety of new behaviours to already-complicated systems. In most thermo-responsive673
gels, raising the temperature above a critical threshold is seen to rapidly lower the affinity674
of the hydrophilic polymer chains for water molecules, and leads to a rapid increase in675
the equilibrium polymer fraction (the polymer fraction at which the osmotic pressure is676
zero). In this paper, we have extended the linear-elastic-nonlinear swelling model outlined in677
Webber & Worster (2023) to incorporate a temperature-dependent osmotic pressure that can678
reproduce this behaviour when the temperature is brought above the LCST threshold.679

Starting from the thermodynamically-based models in common use in the literature680
(Hirotsu et al. 1987; Afroze et al. 2000; Cai & Suo 2011; Drozdov 2014), we show how681
a temperature-dependent Flory-Huggins interaction parameter 𝜒 leads to a temperature-682
dependent generalised osmotic pressure Π, and also elucidate the dependence of the shear683
modulus 𝜇𝑠 on the ambient temperature. These existing models are based on molecular-684
scale understandings of the interaction between water and polymer molecules, but the LENS685
theory that arises from this foundation is macroscopic in nature, and it is possible to choose686
much simpler, phenomenological, functional forms for Π(𝜙, 𝑇) and 𝜇𝑠 (𝜙, 𝑇) that capture687
these behaviours without recourse to a complicated thermodynamic approach. Furthermore,688
applying this approach removes the need to understand the precise value of the interaction689
parameter, instead focusing on more easily measurable bulk-scale properties. We have also690
shown how key qualitative behaviours such as deswelling and changes in osmotic pressures691
can be captured by simpler, linearised, models of the same form used to model non-responsive692
gels (Doi 2009), allowing for qualitative predictions to be found analytically without any693
knowledge of the gel’s micro-scale properties.694

We then showed that the approach of the linear-elastic-nonlinear-swelling theory is able695
to reproduce the transient swelling or deswelling behaviour of thermo-responsive gels both696
qualitatively and quantitatively. By choosing functional forms for the osmotic pressure and697
shear modulus that fit the parameters used in Butler & Montenegro-Johnson (2022), we are698
able to use LENS to reproduce predictions from a full nonlinear Flory-Huggins approach,699
provided that no spinodal decomposition occurs. Our model also provides criteria for such700
phase separation to occur when the diffusivity – a function of macroscopic osmotic pressure701
and shear modulus – is negative, and dried and swollen gels can coexist adjacent to one702
another. In order to regularise solutions of the polymer fraction evolution equation in these703
cases, it is likely necessary to incorporate some kind of surface energy to penalise the704
formation of new surfaces (Hennessy et al. 2020), leading to Korteweg stresses at internal705
interfaces. The question of how to describe such an approach in the context of a LENS model706
remains a topic for future research, since the formation of sharp polymer fraction gradients707
is not permitted in LENS.708

Some of the key applications of thermo-responsive hydrogels are hampered by the slow709
response times of such gels to changes in the ambient temperature. In general, hydrogel710
swelling or drying is a slow process, mediated by viscously-dominated interstitial flows711
through a low-permeability scaffold, with some gels taking hours or days to reach an712
equilibrium state (Bertrand et al. 2016). This is clearly undesirable in microfluidic devices713
or actuators, and having a tunable response time to changes in temperature may be desirable714
for certain applications (Maslen et al. 2023). In order to investigate the response time of715
simple gel structures, we have considered the case of a hollow tube of gel that can act like a716
displacement pump.717

In this geometry, even though the axial dimension may be large, deformation timescales718
are set by the diffusion of water through the thin walls, so morphological changes can occur719
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much more rapidly than they would in a solid gel. This occurs because the shrinkage of the720
outside of the tube is no longer rate-limited by the need to deform and drive fluid through the721
interior of the gel, since water can flow relatively unimpeded down the lumen of the tube.722
The transport of water through the pipe-like structure that results can be used as a proxy723
measure of the speed of response, with water being transported large distances surprisingly724
quickly as a thermal signal propagates.725

In order to model these tubes, we made a slenderness approximation that the polymer726
fraction varies axially at leading order, with only small radial corrections as water is expelled727
from the gel as the critical temperature threshold is exceeded. This allowed for a mathematical728
treatment similar to that used for transpiration through cylinders in Webber et al. (2023), and729
thus we can write down analytical expressions for all of the interstitial fluid fluxes in the gel730
and in the lumen. This approach allows us to tune the geometry of the tubes to match the731
exact response times desired, and allows for the computation of fluid flows through the pore732
matrix, along the axis of the tube, and out of the side walls.733

Though there is no one way to measure the ‘response time’ in more complex geometries,734
we have discussed how varying the geometry and material properties of the gel that forms735
the tube lining can affect the speed at which fluid is transported through the lumen and the736
sharpness of the fluid pulse at the deswelling front. As one might expect, it is seen that thinner737
tubes react more rapidly to changes in temperature, and also that the resultant fluid pulse738
is more spatially localised around the thermal pulse in such cases. We have also elucidated739
the dependence of the fluid pulse driven down the pump on both the osmotic and elastic740
properties of the material forming the tube, allowing for the design of displacement pumps741
with specific response characteristics.742

In the future, these simple model tubes could be connected together to form a network,743
propagating information about external stimuli through the medium of fluid pulses much744
more rapidly than in a solid block of hydrogel, forming the basis for a porous sponge745
built from porous hydrogel, with the pore size and geometry designed to match the desired746
material properties. Such an approach has already been taken experimentally in the design747
of microfluidic devices that exhibit dynamic anisotropy (Maslen et al. 2023), and we hope748
that our modelling will provide potential qualitative insights into the design characteristics749
of such devices in the future.750
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Appendix A. Thermoelastic derivation of equation (2.11)758

All hyperelastic models based on an energy density function W (the Helmholtz free energy)759
require an approach based on thermodynamics to derive the components of the stress tensor760
in terms of the deformation (Zaoui & Stolz 2001). Following a standard approach pioneered761
by Coleman & Noll (1963), we couple a law of local entropy imbalance with the expression762
for the rate of change of internal energy𝑈,763

𝑇
d𝜂
d𝑡

⩾ 𝑅 − ∇ · 𝑸 + 1
𝑇
𝑸 · ∇𝑇 and

d𝑈
d𝑡

= 𝑅 − ∇ · 𝑸 + P :
dF
d𝑡

+ 𝜇d𝐶
d𝑡

− 𝑱 · ∇𝜇, (A 1)764
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where 𝜂 is the entropy, 𝑅 is the external supply of heat, 𝑸 is the heat flux and 𝑇 is the765
temperature, with all quantities measured per unit volume. P is the first Piola-Kirchhoff766
stress tensor given by767

P = 𝜙−1𝜎F −T, (A 2)768

with this term representing energy generation by elastic deformation.𝐶 is the number density769
of water molecules per unit volume of dry gel, equal to (𝜙−1 − 1)/Ω 𝑓 , and 𝜇 is the chemical770
potential of the water. Finally, 𝑱 is the molecular flux of water.771

Since𝑈 = W+𝑇𝜂, these two results can be combined into an inequality equivalent to the772
second law of thermodynamics, in the form of the Clausius-Duhem inequality. This indicates773
that the dissipation 𝐷 must be greater than or equal to zero, where774

𝐷 = −dW
d𝑡

− 𝜂d𝑇
d𝑡

+ 𝜇d𝐶
d𝑡

− 1
𝑇
𝑸 · ∇𝑇 − 𝑱 · ∇𝜇 + P :

dF
d𝑡
, (A 3)775

Using the chain rule and the form of W in equation (2.9) (i.e. an energy density that does776
not depend explicitly on ∇𝑇),777

dW
d𝑡

=
𝜕W
𝜕F𝑖 𝑗

dF𝑖 𝑗

d𝑡
+ 𝜕W
𝜕𝑇

d𝑇
d𝑡

+ 𝜕W
𝜕𝜙

d𝜙
d𝑡
, (A 4)778

Then, since d𝐶/d𝑡 = −( d𝜙/d𝑡 )/(Ω 𝑓 𝜙
2),779 (

𝜕W
𝜕F𝑖 𝑗

− P𝑖 𝑗

) dF𝑖 𝑗

d𝑡
+

(
𝜕W
𝜕𝑇

+ 𝜂
)

d𝑇
d𝑡

+
(
𝜕W
𝜕𝜙

+ 𝜇

Ω 𝑓 𝜙
2

)
d𝜙
d𝑡

⩽
1
𝑇
𝑸 · ∇𝑇 + 𝑱 · ∇𝜇 (A 5)780

Through the assumption that heat transfer and molecular transport are both Fickian, and781
follow laws of the form 𝑸 = A∇𝑇 and 𝑱 = B∇𝜇 where both A and B are negative782
semidefinite matrices, the right-hand side is negative semidefinite, so the left-hand side must783
be less than or equal to zero. This inequality must hold for all deformations and values of784
𝜕𝑇/𝜕𝑡 , so each bracketed term must be identically zero (Salençon 2007). Hence,785

𝜂 − −𝜕W
𝜕𝑇

and P =
𝜕W
𝜕F

so 𝜎 = 𝜙
𝜕W
𝜕F

F T. (A 6)786

Furthermore, the chemical potential 𝜇 is given by787

𝜇 = Ω 𝑓 𝜙
2 𝜕W
𝜕𝜙

, (A 7)788

which, for the choice of W in equation (2.9), gives789

∇𝜇 = −Ω 𝑓

𝜕Π

𝜕𝜙
∇𝜙, (A 8)790

with Π(𝜙) as in equation (2.15a). Since ∇𝑝 = Ω 𝑓∇𝜇 (Webber 2024), this shows that791
the thermodynamic model largely agrees with the transport equation (2.7) but neglects the792
contributions of shear to the polymer diffusivity.793
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Appendix B. Rewriting the poroelastic nonlinear model in the LENS formulation794

In dimensional variables, the model of Butler & Montenegro-Johnson (2022) for the swelling795
of a gel sphere is796

𝜕𝜙

𝜕𝑡
= − 𝑘

𝜇𝑙Ω 𝑓

1
𝑟2

𝜕

𝜕𝑟

(
𝑟2𝜙

𝜕𝜇

𝜕𝑟

)
with (B 1a)797

𝜕𝜇

𝜕𝑟
= Ω 𝑓

(
𝜕𝜎′

𝑟

𝜕𝑟
+
𝜎′
𝑟 − 𝜎′

𝜃

𝑟
− 𝜕Π𝐵𝑀𝐽

𝜕𝑟

)
, (B 1b)798

where 𝜇 is the chemical potential, 𝜎′
𝑟 and 𝜎′

𝜃
are the principal radial and polar stresses and799

Π𝐵𝑀𝐽 is the osmotic pressure as defined without contributions from isotropic elastic stresses,800
which can be related to the Π(𝜙) defined in equation (2.15a) via801

Π𝐵𝑀𝐽 = Π(𝜙) − 𝑘𝐵𝑇

Ω𝑝

(
𝜙 − 𝜙1/3

)
. (B 2)802

The nonlinear elastic principal stresses can be viewed as the effective stresses 𝜎𝑟𝑟 + 𝑝 and803
𝜎𝜃 𝜃 + 𝑝, and have the forms804

𝜎′
𝑟 =

𝑘𝐵𝑇

Ω𝑝

[
(1 − 𝜉𝑑/𝑟)2

𝜙
− 𝜙

]
and 𝜎′

𝜃 =
𝑘𝐵𝑇

Ω𝑝

𝜙𝜉𝑑

𝑟

2 − 𝜉𝑑/𝑟
(1 − 𝜉𝑑/𝑟)2 , (B 3)805

where 𝜉𝑑 is the radial displacement from a fully-dry equilibrium. It is seen that806

1
Ω 𝑓

𝜕𝜇

𝜕𝑟
= −

(
𝜕Π

𝜕𝜙
+ 𝑘𝐵𝑇

3Ω𝑝

𝜙−2/3
)
𝜕𝜙

𝜕𝑟
+ 𝑘𝐵𝑇

Ω𝑝

𝜕𝜙

𝜕𝑟
+ 𝜕𝜎

′
𝑟

𝜕𝑟
+
𝜎′
𝑟 − 𝜎′

𝜃

𝑟
, (B 4)807

hence808

𝜕𝜙

𝜕𝑡
=
𝑘

𝜇𝑙

1
𝑟2

𝜕

𝜕𝑟

{
𝑟2

[
𝜙
𝜕Π

𝜕𝜙
+

4𝑘𝐵𝑇𝜙1/3
00

3Ω𝑝

(
𝜙

𝜙00

)1/3
]
𝜕𝜙

𝜕𝑟

}
−809

𝑘

𝜇𝑙

1
𝑟2

𝜕

𝜕𝑟

{
𝑟2

[
𝑘𝐵𝑇

Ω𝑝

(
1 + 𝜙1/3

) 𝜕𝜙
𝜕𝑟

+ 𝜕𝜎
′
𝑟

𝜕𝑟
+
𝜎′
𝑟 − 𝜎′

𝜃

𝑟

]}
, (B 5)810

with the first two terms exactly equal to the LENS evolution equation (2.25) with diffusivity811
(2.28). The difference arises from the treatment of deviatoric strains, which are assumed to812
be small in the LENS model, with no such assumption made in this approach. If there are813
no deviatoric strains, and the gel is swollen to a uniform polymer fraction 𝜙∗, it is clear that814
𝜉𝑑 = (1 − 𝜙∗1/3)𝑟 and the second term is zero.815

Otherwise, we can quantify the effect of the second term on the rate of change of 𝜙 in816
either swelling or drying contexts. Noting that817

𝜕𝜎′
𝑟

𝜕𝑟
+
𝜎′
𝑟 − 𝜎′

𝜃

𝑟
= 𝒓 · ∇ · 𝜎 (e) =

1
2𝜇𝑠

𝜕𝑃

𝜕𝑟
(B 6)818

When drying, 𝜕𝜙/𝜕𝑟 > 0 and we expect 𝜕𝑃/𝜕𝑟 > 0 as well, with the opposite effect when819
swelling. Thus, we expect real-world swelling to be faster than that predicted by the LENS820
model, with real-world shrinkage to be slower, once the full effects of deviatoric strains are821
incorporated.822

The boundary condition at the gel–water interface in Butler & Montenegro-Johnson (2022)823
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Figure 14: Comparison between the interfacial polymer fraction 𝜙1 at different
temperatures as a function of bead radius 𝑎; in general, the bead has a drier interfacial

state in the fully nonlinear model.

sets the local polymer fraction 𝜙1 via824

𝑎4
0𝜙

4
3
00

𝑎4 − 𝜙2
1 = −Ω𝜙1

[
𝜙1 + log(1−𝜙1) + 𝜙2

1𝜒 − 𝜙2
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𝜕𝜒

𝜕𝜙
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Ω𝑝𝜙1Π
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−
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1−𝜙
4
3
1

)
.

(B 7)825
This can be written826

Π(𝜙1) =
𝑘𝐵𝑇

Ω𝑝

(
𝑎4

0
𝑎4

𝜙
4/3
00
𝜙1

− 𝜙1/3
1

)
827

= 4𝜇𝑠

[
𝑎0
𝑎

−
(
𝜙1
𝜙00

)1/3
]
+ 𝜇𝑠

[
3
(
𝜙1
𝜙00

)1/3
+
𝑎4

0
𝑎4
𝜙00
𝜙

− 4𝑎0
𝑎

]
, (B 8)828

which reduces exactly to the boundary condition of equation (2.29) in the case of no deviatoric829
strains (isotropic swelling with 𝑎3

0𝜙00 = 𝑎3𝜙1). This modifies the interfacial polymer fraction830
from the value predicted by LENS theory, as illustrated in figure 14.831

Appendix C. Comparison with linearised osmotic pressures832

In later sections of this paper, we use the linearised form of the osmotic pressure in equation833
(2.24) to solve problems in an analytically-tractable form. In this appendix, we show that834
there is good qualitative agreement between the linearised model’s predictions and those of835
the model employing the full osmotic pressure of (2.15a).836

In the case of swelling with the temperature lowered from 308 K to 304 K, using the HHT837
parameters gives an osmotic pressure function that is zero at 𝜙 = 𝜙00, and close to zero for838
all small polymer fractions. This function is difficult to approximate linearly in the form of839
equation (2.24), as illustrated in figure 15a, but we show here how the resultant parameters840
still give good qualitative agreement with fully nonlinear calculations.841

Using the lsqnonlin function in Matlab to fit a value of Π00 (resulting in the linear osmotic842
pressure illustrated in figure 15a), we find that843

Π00 =
0.0824𝑘𝐵𝑇

Ω 𝑓

and M = 6.306 × 10−3 (C 1)844

which can be substituted into a linearised form of the transport equation (2.25) with845

𝐷 (𝜙) = 𝑘Π00
𝜇𝑙

[
𝜙

𝜙0
+ 4M

3

(
𝜙

𝜙0

)1/3
]
. (C 2)846
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(a) Comparison between nonlinear
and linear expressions for Π(𝜙),

where 𝜙0 = 𝜙0 (308 K)
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Figure 15: Plots comparing the fully nonlinear osmotic pressure model of Butler &
Montenegro-Johnson (2022) with parameters from Hirotsu et al. (1987) with a fitted

linear model of the form (2.24).

Figure 15b illustrates how swelling is slower in the case of linearised osmotic pressure than847
in the fully-nonlinear case computed by Butler & Montenegro-Johnson (2022). The reason848
for this difference in swelling rates is apparent in figure 15a: in drier gels (i.e. at the start849
of the swelling process), 𝜕Π/𝜕𝜙 is greater for the nonlinear osmotic pressure expression850
(the hatched region in the plot), so diffusion is more rapid here. This leads to faster growth851
relative to the fully-linear approach.852

However, figure 15b shows that the same qualitative swelling behaviour is seen in the853
linearised case, justifying its use here for mathematical simplicity. All of the analysis in854
the present paper could be repeated with a nonlinear osmotic pressure if accuracy were855
required in timescales. Indeed, there is significant debate as to the accuracy of even the most856
commonly-accepted models for osmotic pressure at extremes of polymer fraction, where the857
gel may behave like more of a dilute suspension (𝜙 → 0) or glassy material (𝜙 → 1) (Feng858
et al. 2024). Other such functional forms for Π(𝜙), which often have a power-law dependence859
on polymer volume fraction, may be fitted more closely by a linear approximation around860
𝜙00.861

REFERENCES
Abramowitz, M. & Stegun, I. A. 1970 Handbook of Mathematical Functions: with Formulas, Graphs,862

and Mathematical Tables. National Bureau of Standards.863
Afroze, F., Nies, E. & Berghmans, H. 2000 Phase transitions in the system poly(N-864

isopropylacrylamide)/water and swelling behaviour of the corresponding networks. J. Mol. Struct.865
554 (1), 55–68.866

Bertrand, T., Peixinho, J., Mukhopadhyay, S. & MacMinn, C. W. 2016 Dynamics of swelling and drying867
in a spherical gel. Phys. Rev. Appl. 6 (6), 064010.868

Butler, M. D. & Montenegro-Johnson, T. D. 2022 The swelling and shrinking of spherical thermo-869
responsive hydrogels. J. Fluid Mech. 947, A11.870

Cai, S. & Suo, Z. 2011 Mechanics and chemical thermodynamics of phase transition in temperature-sensitive871
hydrogels. J. Mech. Phys. Solids 59 (11), 2259–2278.872

Cai, S. & Suo, Z. 2012 Equations of state for ideal elastomeric gels. EPL 97 (3), 34009.873
Coleman, B. D. & Noll, W. 1963 The thermodynamics of elastic materials with heat conduction and874

viscosity. Arch. Ration. Mech. Anal. 13 (1), 167–178.875
Doi, M. 2009 Gel dynamics. J. Phys. Soc. Jpn. 78 (5), 052001.876



30

Dong, L. & Jiang, H. 2007 Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3,877
1223–1230.878

Drozdov, A. D. 2014 Swelling of thermo-responsive hydrogels. EPJE 37 (10), 93.879
Etzold, M. A., Linden, P. F. & Worster, M. G. 2021 Transpiration through hydrogels. J. Fluid Mech. 925,880

A8.881
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