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Recent experiments have shown a rich variety of
behaviour when soft, brittle, hydrogels are frozen,
since water cannot freeze within the pore space of
these materials as a result of the Gibbs-Thompson
effect. Hence, no ice forms within the hydrogel
matrix, and pure ice grows by cryosuction, drawing
water from the surrounding gel towards the phase
boundary. The growth of this ice leads to deformation
of the poroelastic gel, and drives interstitial flows
in the nanoscale pores within the remaining dried
hydrogel. In this paper, we model the formation of
ice when hydrogels are cooled at a fixed surface,
and investigate both the rate at which the ice grows
and the elastic response of the gel that remains,
explaining the steady states seen in experiments and
the processes by which damage can be effected on the
hydrogel. Understanding these freezing behaviours
is vitally important if we are to comprehend the
mechanisms behind damage to porous media such as
asphalt road surfaces or human organs when they are
frozen, and how to mitigate such effects.

1. Introduction
Hydrogels comprise an elastic, hydrophilic, polymer
scaffold saturated with adsorbed water molecules that
are free to move through the porous structure formed
by the cross-linked polymer chains. When such gels are
brought below the freezing point of water, a complicated
range of phenomena – ranging from the formation
of ice lenses [1] to mushy layers [2] – are observed.
Common to these phenomena is the fact that water
cannot easily freeze within the pores of a hydrogel
unless the temperature is very low, since the ice-entry
temperature of the pore space is significantly below the
freezing point of bulk water. This effect is well-known,
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arising from capillarity, and is described extensively in the literature [3–5].
The Gibbs-Thompson effect lowers the freezing temperature of water at curved interfaces to a

value
Tice-entry = Tm − Γκ, (1.1)

where Tm is the unconfined melting point, κ is the curvature and Γ = γTm/ρsL [4] is a positive
parameter related to the surface tension γ, the solid (ice) density ρs and the specific latent heat
of fusion L. In the case of a hydrogel, the curvature κ would scale with the reciprocal of the pore
scale of 10−8 to 10−7 m [6] and therefore the ice-entry temperature will be of the order −10 ◦C or
lower.

Therefore, at moderately cold temperatures below freezing but above the ice-entry
temperature, ice will form separate from the gel, and water must be drawn from the hydrogel to
form this ice. This process, where water is driven from the hydrogel and sucked into the growing
ice, is referred to as ‘cryosuction’ [7], and leads to the deswelling or ‘drying’ of the remaining
gel. Modelling the freezing process therefore requires a coupling between the thermal effects
involved in freezing itself and the elastic and osmotic effects driving flow and reconfiguration
of the hydrogel matrix as water is removed.

When ice forms in soft, wet, porous materials such as soils or plant tissues, predicting its form
and growth patterns can be incredibly complicated. As a result, many models of such processes
are empirical in nature [8], and research into frost damage has tended to progress independently
in biology [9], plant physiology [10] and food science [11], even though the underlying physical
processes are identical. It is also commonly reported that brittle materials are damaged primarily
by the volumetric expansion of water as it freezes into ice, but this has been shown definitively
not to be the case. Since water expands by only around 10% in volume when freezing into ice, this
leads to strains of the order of 2% in each direction, often well within the range of strain easily
accommodated by elastic media without damage [7,8]. Instead, it is the process of cryosuction,
and the draw of water from wetter regions to form the ice, that causes the damage in the freezing
process [7], since the growing ice displaces the bulk material, resulting in stresses that cannot
be supported without fracture. Indeed, damage still occurs when there is no expansion upon
freezing, and liquids that contract when they freeze exhibit buildups of stress [12].

A number of experiments have been carried out in recent years to illustrate this phenomenon
[1,7,13], measuring stress buildup in gels as ice forms. In this paper, we couple a model for the
formation of ice to the linear-elastic-nonlinear-swelling (LENS) theory for hydrogels introduced
in recent studies [14,15] to explain the physical origin of these stresses. We start by introducing
boundary conditions at the ice–gel phase boundary, and quantify the depression in freezing
temperature as a function of the osmotic pressure in the gel. Coupling this with a Stefan condition
that sets the rate at which water must be drawn from the hydrogel to form ice, we are able to
model the growth of an ice layer and the evolution of the gel composition that results.

As a first application of this modelling, we will explain the one-dimensional growth of ice at a
cooled boundary investigated experimentally in [1,16]. In these experiments, ice is seen to grow
and water is drawn from the hydrogel until a steady state is reached comprising a finite thickness
ice layer and partially-dried gel. We show that this state occurs when the temperature of the
cooled boundary matches the liquidus temperature, so that the thickness of the ice in steady state
measures the osmotic pressure in the hydrogel (an example of gel-freezing osmometry, or GelFrO
[16]). Furthermore, our modelling allows for the investigation of the transient state, including
how the growth rate of ice depends on material properties and temperature differences.

Secondly, we extend our modelling to a two-dimensional system akin to that explored
experimentally in [1]. Here, the lower boundary of a narrow channel of gel is cooled with a
temperature gradient, with a thicker layer of ice forming in the cooler regions and no ice forming
on sections of the boundary at a temperature above the unmodified freezing temperature of water.
In this case, in addition to the flow directly towards the phase boundary, there is interstitial flow
from the warmer, more swollen gel towards the colder, drier regions until a steady state is reached
in which osmotic pressures balance deviatoric stresses due to differential swelling in the gel.
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This modelling allows us to understand the source of stress buildup at the ice–gel boundary and
the specific way in which the surrounding elastic matrix must deform. We can derive analytical
expressions for the displacement field and the strains in the dried hydrogel, giving an explanation
for the effect of boundary conditions on the mode of damage first seen experimentally by [1].

2. Equations and boundary conditions governing freezing
In a recent series of papers, we introduced a model for the dynamics of super-absorbent gels
founded on a linear-elastic constitutive relation that allows for large isotropic deformation
corresponding to swelling or drying [14,15], in effect treating a hydrogel swollen to any degree as
a linear-elastic material whose properties change based on the amount of water within the pore
space. Relative to a reference state in which a gel is fully swollen with a uniform polymer volume
fraction ϕ0, deformation of an individual gel element can be measured by the displacement vector
field ξ(x, t). We can then write down a Cauchy strain tensor

e =
1

2

[
∇ξ + (∇ξ)T

]
=

[
1−

(
ϕ

ϕ0

)1/n
]
I + �, (2.1)

in n dimensions, separated into an isotropic part due to swelling and drying (changes in the local
polymer fraction ϕ) and a traceless deviatoric part �, which is assumed small. This also allows us
to relate the divergence of the displacement field to ϕ, taking the trace of the strain tensor to find

∇ · ξ= n

[
1−

(
ϕ

ϕ0

)1/n
]
. (2.2)

From this foundation, a constitutive relation for the Cauchy stress tensor can be deduced [14],
describing the elastic and osmotic response in terms of two polymer-fraction-dependent material
parameters: a shear modulus µs(ϕ) and an osmotic pressure Π(ϕ). This shows how stresses on
gel elements arises from pressures and deviatoric stresses,

�=− [p+Π(ϕ)] I + 2µs(ϕ)�, (2.3)

where p is the pervadic or pore pressure of the fluid component of the gel [17,18]. This pressure
can be viewed physically as the pressure of the water in a gel that would be measured by a
transducer separated from the bulk hydrogel by a permeable membrane, or it can be related to a
chemical potential [17]. It is gradients in p that drive flow through a porous matrix, with Darcy’s
law setting the interstitial fluid flux u=− [k(ϕ)/µl]∇p, where k(ϕ) is the permeability and µl

the fluid viscosity. It was shown in [14] that the polymer fraction evolves in time following the
equation

∂ϕ

∂t
+ q · ∇ϕ+∇ ·

[
ϕk(ϕ)

µl
∇p

]
= 0 with q=u+ up. (2.4)

The polymer velocity up can be approximated by (ϕ/ϕ0)
−1/n ∂ξ/∂t at leading order in the

deviatoric strain [15], whilst the total flux vector q is solenoidal. This equation is coupled with
Cauchy’s momentum equation ∇ · �= 0 to close the system, relating gradients in p to those in ϕ

and the deviatoric strain �. Finally, the displacement field ξ is shown to satisfy a forced biharmonic
equation

∇4ξ + n∇∇2
(

ϕ

ϕ0

)1/n

= 0, (2.5)

with gradients in polymer fraction forcing the biharmonic operator of standard linear elasticity.
Together, equations (2.2), (2.3), (2.4) and (2.5) allow us to describe the dynamics of a super-
absorbent hydrogel and model the associated stresses, deformation and interstitial flows.
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(a) The phase boundary
As discussed above, when gels are frozen at intermediate temperatures just below the equilibrium
freezing temperature of water Tm, water is expelled from the gel to form pure ice outside of the
pore structure, and so the phase boundary at the freezing front is between solid ice and partially-
dried gel. The presence of pressures in the gel is known to modify the freezing temperature at
this boundary. This effect arises from the (generalised) Clausius-Clapeyron relation [19] for the
depression in freezing temperature to a liquidus temperature TL,

LTL − Tm
Tm

=
n · � · n+ p0

ρs
+

pl − p0
ρl

, (2.6)

where ρs is the density of ice, ρl is the density of water, L is the specific latent heat of fusion, pl is
the fluid pressure and p0 is a reference (atmospheric) pressure. As in [16], we assume that the ice
is stress-free, and n · � · n=−p0, so

ρlL
TL − Tm

Tm
= pl − p0 = pl + n · � · n. (2.7)

Since the work of Nye [20] on regelation, there has been much discussion on whether pressures or
normal stresses (n · � · n) should be used on the right-hand side of this expression, a distinction
that can make significant differences to the predictions where there are large overburden
pressures or significant (deviatoric) elastic stresses. This question has recently been resolved by
use of a careful derivation of the generalised Clapeyron equation in the presence of anisotropic
stresses [19]. However, in our case, neither of these caveats apply, and the dominant influence on
the right-hand side arises from concentration of the solvent and solute molecules, allowing us to
model the freezing temperature depression as a purely colligative effect.

Therefore, following the same approach as the investigation of freezing colloidal suspensions
in [21], we identify p0 with P (the bulk pressure, equal to the sum of osmotic and pervadic
pressures) and identify pl with p. Therefore, the right-hand side is equal to −Π(ϕ), and the
liquidus relation depends solely on osmotic pressures. Thus,

TL = Tm

(
1− Π(ϕ)

ρlL

)
, (2.8)

and the melting temperature of the ice is depressed by a quantity related to the local polymer
volume fraction. Viewed as a boundary condition on the temperature field, this sets a lower
freezing temperature at interfaces with drier gels, whilst viewed as a boundary condition on
the hydrogel, this sets a polymer fraction greater than ϕ0 at an undercooled interface. It is this
latter interpretation that we will employ later when modelling cryosuction, finding that a value of
T < Tm at the ice–gel boundary drives drying of the gel and growth of the ice through interstitial
flows towards this phase boundary.

The Stefan condition at the ice–gel boundary relates the growth of the ice layer to the difference
in heat fluxes at the interface, via

ρsLVn =− [K (n · ∇T )]+− , (2.9)

where Vn is the rate of solidification normal to the freezing front, n is the unit normal pointing
from the ice into the hydrogel, and K is the thermal conductivity, which may vary from phase to
phase. The right-hand side is evaluated on either side of the boundary, with the + side taken to
be in the gel and the − side in the ice in the present study.

In order for ice to grow, water must be supplied from the hydrogel, and therefore mass
conservation implies

ρsVn =−ρlu · n so Vn +
ρl
ρs

u · n= 0. (2.10)

In other words, the mass of ice that grows must equal the mass of water expelled from the
hydrogel. Since, as discussed above, ρl/ρs ≈ 1.1 [13] and expansion in freezing is not the
dominant effect driving damage, we henceforth assume ρl/ρs = 1 for simplicity, writing ρs = ρl =
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∂T/∂z = 0

ϕ≡ ϕ0

T = Tc
x

z

(a) The initial state

T (z, t)ϕ(z, t)

Ice

Gel

a(t)

(b) Ice forms in a layer

T ≡ Tc

ϕ≡ ϕ∞

a∞

(c) A steady state is reached

Figure 1: Schematic plots of the formation of ice in a box with infinite horizontal extent and a
cooled lower boundary. Ice grows and the gel dries out but eventually a steady state is reached
where the ice has thickness a∞ and the gel is uniformly dried to a polymer fraction ϕ∞.

ρ, though adapting our approach to account for volumetric expansion would be a straightforward
extension. Using Darcy’s law for the interstitial flux in the gel, it can be seen that pore pressure
gradients are needed to drive ice growth,

u · n=−
[
k(ϕ)

µl
(n · ∇p)

]+
so

[
ρLk(ϕ)

µl
(n · ∇p)

]+
=− [K (n · ∇T )]+− . (2.11)

This allows us to couple the pervadic pressure field in the gel with the temperature field, and
model the cryosuction process whereby water is driven towards a freezing front. Provided the
right-hand side of equation (2.11) is positive (i.e. there is freezing via equation (2.9)), n · ∇p is
positive in the gel, so pressure is higher in the bulk of the gel than at the interface, driving a flow
towards the interface that allows the ice layer to grow.

3. Modelling unidirectional freezing
To begin our investigation into the freezing of gels, we consider a situation in which an initially
uniformly-swollen layer of gel of infinite horizontal extent (in the x direction) is sandwiched
between impermeable confining surfaces at z = 0 and z = h, as pictured in figure 1a. The upper
surface is insulated, whilst the lower surface is cooled to a temperature Tc <Tm, so we expect
ice to form here, occupying a layer of thickness a(t) (figure 1b). We assume no variation in the
horizontal direction, so all x derivatives are zero.

If the gel were fully contained within rigid boundaries in both the horizontal and vertical
directions, arbitrarily large pressures would be generated through the expansion of water on
change of phase, and ice would be unable to form, as the freezing temperature would be
depressed by the high pressures [22]. In our model, water and gel are free to be displaced in
the horizontal direction (parallel to x) but there is confinement in the vertical direction. Though
this does generate a normal stress that acts throughout the gel, we have shown in equation (2.8)
that the liquidus temperature relation is a purely colligative effect dependent only on osmotic
pressures, since the deviatoric elastic stresses are small here. Hence, the presence of the fixed
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upper boundary does not generate large elastic stresses that influence the growth of ice, and we
safely continue to make the equal density assumption.

At the boundary between the ice and the gel, the temperature is equal to TL, as defined by
the liquidus relation of equation (2.8). We make the assumption that TL is always greater than
the ice-entry temperature of equation (1.1), and thus the ice that forms is pure, sited outside of
the pores of the gel. In the ice layer, heat transfer is by conduction, whilst there is an advective
component in the gel, giving the governing equations

∂T

∂t
= κice

∂2T

∂z2
in 0≤ z ≤ a(t), (3.1a)

∂T

∂t
+ qz

∂T

∂z
= κgel

∂2T

∂z2
in a(t)≤ z ≤ h, (3.1b)

where qz is the vertical phase-averaged material flux and κ is the thermal diffusivity. These
equations are solved subject to T = Tc on z = 0 and ∂T/∂z = 0 on z = h (arising from the
insulated boundary). The temperatures in each domain match at z = a(t), with a value TL, by
definition.

Modelling the transport of heat through a porous medium such as a hydrogel is more
complicated in reality than the simple advection-diffusion model presented here. A full model,
based on thermoelasticity, takes into account contributions to the heat energy from deformation
and from the entropic mixing of water and polymer molecules [23]. Even in regular non-
deformable porous media, dispersion can be important owing to the tortuosity of pore-scale
flows [24]. In the present study, we assume that all flows are slow and deformation occurs on
sufficiently slow timescales that only advection and diffusion need to be considered. Furthermore,
we make the assumption that diffusion of heat occurs in the gel with the diffusion coefficient κgel
approximately equal to the thermal diffusivity of pure water. As a first model, this is justified
on two counts: firstly, the gels remain highly swollen throughout, with ϕ0 ∼ 1− 10%, and so the
majority of a gel is formed of water, and secondly since the thermal diffusivities of the water and
polymer components are similar in magnitude [25].

In this uniaxial configuration, take n= 2, and equation (2.4) describing the polymer fraction
evolution becomes

∂ϕ

∂t
+ qz

∂ϕ

∂z
+

∂

∂z

[
ϕk(ϕ)

µl

∂p

∂z

]
= 0 in a(t)≤ z ≤ h. (3.2)

The solenoidal nature of the total flux vector q and horizontal uniformity together imply that qz is
a constant, since ∂qz/∂z = 0. However, since polymer and fluid velocities are zero on z = h, qz ≡ 0

and there is no contribution from the advective term. Finally, Cauchy’s momentum equation and
the constitutive relation of equation (2.3) together give

∂p

∂z
=−∂Π

∂z
+

∂

∂z
[2µs(ϕ)�zz ] . (3.3)

Since there is horizontal uniformity, we can deduce an expression for �zz in terms of ϕ. Uniformity
implies that exx = 0 – i.e. that there is no strain parallel to the ice–gel interface. Thus, using
equation (2.1), �xx = (ϕ/ϕ0)

1/2 − 1, and �zz =−�xx by the traceless nature of �. We can then
substitute this expression into equation (3.3) to show that ∂p/∂z ∝ ∂ϕ/∂z , through

∂p

∂z
=−µlD(ϕ)

ϕk(ϕ)

∂ϕ

∂z
with D(ϕ) =

ϕk(ϕ)

µl

{
∂Π

∂ϕ
+ 2

∂

∂ϕ

[
µs(ϕ) (ϕ/ϕ0)

1/2
]}

, (3.4)
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where D(ϕ) can be viewed as a nonlinear polymer diffusivity. This allows us to write the
governing equations solely in terms of ϕ and T ,

∂T

∂t
= κgel

∂2T

∂z2
in a(t)≤ z ≤ h, (3.5a)

∂ϕ

∂t
=

∂

∂z

[
D(ϕ)

∂ϕ

∂z

]
in a(t)≤ z ≤ h, (3.5b)

∂T

∂t
= κice

∂2T

∂z2
in 0≤ z ≤ a(t). (3.5c)

The boundary conditions on T (z, t) and ϕ(z, t) are

T (0, t) = Tc, T (a(t), t) = TL,
∂T

∂z

∣∣∣∣
z=h

= 0 and (3.6a)

∂ϕ

∂z

∣∣∣∣
z=h

= 0,
∂ϕ

∂z

∣∣∣∣
z=a(t)

=
ϕ

ρLD(ϕ)

[
K∂T

∂z

]z=a(t)+

z=a(t)−
, (3.6b)

respectively. The first condition on ∂ϕ/∂z arises from combining equation (3.4) with no flow
through the top boundary, and the second arises from equation (2.11). Growth of the ice layer
0≤ z ≤ a(t) is governed by the Stefan condition of equation (2.9),

ρLda

dt
=−

[
K∂T

∂z

]z=a(t)+

z=a(t)−
. (3.7)

This system of equations (3.5)–(3.7) is the same as that found in [21] for the freezing of colloidal
suspensions, albeit with a different compositional diffusivity that is modified by deviatoric
stresses. This is to be expected, since it is only through elastic stresses (arising from cross-linking
of the polymer scaffold) that our physical situation differs from a colloid.

(a) Steady state
Recent experiments freezing hydrogels in a rigid container with a loose upper surface show that
a steady state is reached where ice has formed with a uniform temperature Tc throughout. Since
we are neglecting thermal expansion in the present model, we ignore the movement of this upper
surface and assume that the container height remains equal to h throughout. Ice formation draws
water from the surrounding gel, raising the osmotic pressure such that the liquidus temperature
eventually reaches Tc and no further freezing can occur. This leaves behind a uniformly-dried
gel and a layer of pure ice [1], as pictured in figure 1c. We start by seeking a steady state of
the governing equations (3.5), and find that the only admissible temperature field is T ≡ Tc in
0≤ z ≤ h. Thus, as seen in the experiments, TL = Tc in this state. Equation (3.5b) for ϕ shows that
the only steady state solution has a uniform polymer fraction ϕ∞, and we can use the liquidus
relation (2.8) to show that

Tc = Tm

[
1− Π(ϕ∞)

ρL

]
, (3.8)

implicitly determining ϕ∞ in terms of the undercooling and the material properties. By
conservation of polymer, we can also deduce the steady-state ice thickness a∞,

hϕ0 = (h− a∞)ϕ∞ so a∞ = h

(
1− ϕ0

ϕ∞

)
. (3.9)

This allows us to deduce the value of the osmotic pressure purely in terms of measurable
quantities a∞ and Tc, and can vary the value of Tc to deduce a constitutive relation for Π(ϕ).
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0.8

1

(Tc − Tm)/Tm

1
−

a
∞
/
h

Π =Π0
ϕ
ϕ0

ln
(

ϕ
ϕ0

)
(Π0 ≈ 2.6× 10−3ρL)

Π =Π0
ϕ−ϕ0

ϕ0

(Π0 ≈ 4.8× 10−3ρL)

[1/1] Padé approximation

Figure 2: Plots of the steady-state gel thickness against base temperature for different degrees of
undercooling. The red points are the experimental results from [1], showing no ice formation at
Tc = Tm = 0 ◦C, and then a thicker ice layer as the temperature is lowered. The two black lines
show the predicted ice thicknesses of equation (3.9) for linear and logarithmic osmotic pressures
in our model, with the fit parameter Π0 deduced from a nonlinear least-squares fitting to the
experimental data using Matlab’s lsqnonlin. The red curve shows the best fit Padé approximant
form for Π (3.11) from the experimental data.

Specifically,

Π

(
1

1− a∞/h

)
= ρLTm − Tc

Tm
. (3.10)

Figure 2 shows how this steady ice layer thickness can be seen to depend on the specific form
of the constitutive relation for Π(ϕ). The dashed curve shows a linear osmotic pressure, of the
form that we will use in the present study, whilst the solid curve shows the logarithmic osmotic
pressure in a Hencky effective elastic model [26]. We can use the results from experiments to
deduce a fitted form of the osmotic pressure function, as shown in the red curve of figure 2.
Assuming that Π takes the form of a [1/1] Padé approximant with Π(ϕ0) = 0, we fit parameters
to find the other constants. In the case of the experimental results in [1],

Π(ϕ)≈ 1× 10−3ρL
ϕ0

ϕ− ϕ0

1− ϕ/(6.6ϕ0)
. (3.11)

This shows that the osmotic pressure has a zero at ϕ0, as would be expected, but also that Π →∞
as ϕ→ 6.6ϕ0, introducing an upper (dried) limit for the polymer fraction, evident in the plateau
of figure 2, where 1− a∞/h≈ 1/6.6.

Qualitatively, our model’s theoretical predictions in figure 2 match the experimental
measurements made by [1], with the ice layer thickness approaching zero as T → Tm from below.
However, a linear or logarithmic osmotic pressure does not reproduce the plateau apparent from
experiments, where the gel can be neither dried nor compressed any further, at 1− a∞/h≈ 0.2 in
this case, and all that remains of the hydrogel is a polymer scaffold. Since our model is only valid
for small deviatoric strains in the linear regime, we continue to use a linear osmotic pressure since
we are unlikely to reach such a plateau, where there is extreme drying and therefore large strain.

(b) Non-dimensionalisation and linearisation
In order to model the transient evolution of the ice layer, we return to the governing equations
(3.5) and boundary conditions (3.6). We now make the assumption that the material properties k
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(a) Plots of ice thickness against time
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(b) Plots of the polymer fraction field at
different times when C = 1

Figure 3: Numerical solutions to equations (3.15) with the temperature field of (3.16) showing the
growth of the ice layer and the subsequent drying of the gel. In all cases, Le/S = 0.1.

and µs do not depend on polymer fraction ϕ and assume a linear osmotic pressure

Π(ϕ) =Π0
ϕ− ϕ0

ϕ0
. (3.12)

These assumptions, alongside the approximation that ϕ≈ ϕ0 throughout the drying process,
allow us to work in the limit of a constant compositional diffusivity D(ϕ) =D, and we can
non-dimensionalise the governing equations (3.5) through the introduction of new variables

z∗ =
z

h
; a∗ =

a(t)

h
; t∗ =

Dt

h2
; θ=

T − Tc
Tm − Tc

; Φ=
ϕ

ϕ0
, (3.13)

with

D=
k

µl
(Π0 + µs) , (3.14)

from equation (3.4). Then, the system of equations and boundary conditions driving ice growth
are

∂θ

∂t∗
=Legel

∂2θ

∂z∗2
in a∗(t∗)≤ z∗ ≤ 1, (3.15a)

∂Φ

∂t∗
=

∂2Φ

∂z∗2
in a∗(t∗)≤ z∗ ≤ 1, (3.15b)

∂θ

∂t∗
=Leice

∂2θ

∂z∗2
in 0≤ z∗ ≤ a∗(t∗), (3.15c)

da∗

dt∗
=−

[
Le

S
∂θ

∂z∗

]z∗=a∗(t∗)+

z∗=a∗(t∗)−
, (3.15d)

θ(0, t∗) = 0, θ(a∗(t∗), t∗) = 1− C
[
Φ(a∗(t∗), t∗)− 1

]
,

∂θ

∂z∗

∣∣∣∣
z∗=1

= 0 and (3.15e)

∂Φ

∂z∗

∣∣∣∣
z∗=1

= 0,
∂Φ

∂z∗

∣∣∣∣
z∗=a∗(t∗)

=

[
Le

S
∂θ

∂z∗

]z∗=a∗(t∗)+

z∗=a∗(t∗)−
. (3.15f )

where Le= κ/D is the Lewis number, representing the ratio of thermal to compositional
diffusivities, and S =L/cp(Tm − Tc) is the Stefan number. C =Π0Tm/ρL(Tm − Tc) is a
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Figure 4: Plots of the growth rate λ of the early-time similarity solution and a comparison of the
early-time solution for a∗(t∗) with full numerical results, showing close agreement until the layer
thickness is appreciable compared with the container height.

dimensionless parameter representing the importance of osmotic effects relative to the latent heat
of fusion, quantifying the degree of undercooling due to osmotic pressure at the phase boundary.

We treat the thermal properties of the hydrogel as approximately the same as those of
pure liquid water since the polymer fraction of such gels can be very small [25,27]. Thus,
Legel =Lewater and Sgel = Swater. Thermal diffusivities of water and ice are of the order 10−7

to 10−6 m2s−1, yet the poroelastic diffusivity of hydrogels, D, scales like kΠ0/µl, approximately
of the order 10−9 to 10−8 m2s−1 using values from the literature [28,29]. Hence, it is clear that
heat diffuses through the system much more rapidly than water through the pore spaces. This
motivates considering the limit Le≫ 1, implying a linear temperature field in the ice and a
uniform temperature field in the gel

θ=


{
1− C

[
Φ(a∗(t∗), t∗)− 1

]} z∗

a∗(t∗)
in 0≤ z∗ ≤ a∗(t∗)

1− C
[
Φ(a∗(t∗), t∗)− 1

]
in a∗(t∗)≤ z∗ ≤ 1

, (3.16)

or, physically, that the gel has a uniform temperature equal to the liquidus temperature at the
phase boundary and the heat fluxes in the ice are vertically uniform.

Numerical solutions are plotted in figure 3 showing the growth of the ice layer and the
evolution of the polymer fraction field, showing how the gel dries out from the phase boundary
inwards, with the ice thickness increasing. In all cases, there is an approach to the steady state
computed in equation (3.8) in which

Φ∞ = 1 +
1

C thus a∗∞ =
C

1 + C . (3.17)

(c) Early-time ice growth
At early times, the ice growth boundary condition shows that there is rapid growth, with the
condition of equation (3.15d) becoming

da∗

dt∗
=

Leice
Sice

1− C [Φ(a∗(t∗), t∗)− 1]

a∗(t∗)
, (3.18)
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x
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T = Tc T = Tm

T (x, z, t)

Figure 5: A diagram illustrating the physical setup for this problem, with a gel sandwiched
between an insulating upper plate at z = h, an impermeable wall at z = 0 and a cooled lower plate
at z = 0 with a temperature gradient. An ice lens forms in the region 0≤ x≤L with thickness
a(x, t).

under the assumption of a linear temperature profile in the ice and a uniform temperature (equal
to the liquidus temperature) in the gel. This shows that the ice layer has an infinite growth rate at
t∗ = 0, and thus the early time behaviour may not be well-resolved by numerical modelling. At
these early times, however, the gel drying is confined to a thin boundary layer close to z∗ = a∗(t∗),
so we model the gel domain as effectively infinite in extent, ignoring any effects of the lid at z∗ = 1.

In this domain, a similarity solution to the governing equations exists, taking the similarity
variable χ= z∗/2

√
t∗ and letting a∗(t∗) = 2λ

√
t∗. The resultant equations are solved by

Φ= 1 +
Le

S
erfcχ

2λ√
π
e−λ2

+ CLe
S erfcλ

, (3.19)

where the Lewis and Stefan numbers are those for ice, and λ satisfies

Le

S

(
1−

√
πCλeλ

2

erfcλ
)
= 2λ2. (3.20)

Figure 4a shows the dependence of λ on the two non-dimensional parameters in this problem,
Le/S and C. It is seen that increasing C leads to slower ice growth, and that increasing Le/S has
the opposite effect. This can be understood by noticing that a larger value of C imposes a lower
liquidus temperature at the phase boundary, and thus the magnitude of ∂θ/∂z∗ is reduced, such
that thermal fluxes are smaller and ice growth is retarded. Taking a larger Lewis number relative
to the Stefan number, however, suggests faster thermal diffusion or a cooler lower boundary, so
leads to faster freezing.

Figure 4b illustrates how the similarity solution’s predictions for a∗(t∗) compare with the full
numerical solutions, showing close agreement as t∗ → 0, with a divergence as time increases and
the ice grows. Eventually, the effect of the finite domain becomes marked when the gel dries and
is compressed, and there is a lack of water to supply to the growing frozen layer.

4. Ice lens formation with temperature gradients
In the modelling of the previous section, advective effects in the polymer fraction evolution
equation can be neglected, and the freezing process leads to cryosuction in one direction, from
more swollen gel closer to the top boundary towards the phase boundary. As a result, only vertical
stresses form in the gel as it is displaced in a horizontally-uniform manner. In order to understand
the processes by which porous media may be damaged by cryosuction, recent experiments have
replaced the uniformly cooled lower boundary of section 3 by a boundary with a temperature
gradient, with more ice forming in cooler sections and no ice forming along the boundary where
T > Tm [1]. Such a situation is pictured in figure 5, where the lower boundary is cooled to a
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temperature

T =

Tm − 1

2
(Tm − Tc)

(
1 + cos

πx

L

)
x≤L

Tm x>L

(4.1)

where the temperature variation occurs over a lengthscale L, and ∂T/∂x = 0 at x= 0 and x=L

(we have chosen the simple form of equation (4.1) to have continuous temperatures and heat
fluxes, even at the solid boundary x= 0 and at the point x=L where T = Tm). The effect of this
cooling is to produce ice occupying the region 0≤ z ≤ a(x, t), with the space above the ice layer
comprising unfrozen hydrogel. Since the ice growth occurs in a tapered manner, with a sharp
nose at the freezing front, it is natural to draw parallels with the propagation of cracks in elastic
materials, since the formation of an ice lens looks qualitatively like the growth of a crack.

In Irwin’s classical study of fracture mechanics [30], it is shown that cracks can propagate
through materials in three distinct ways, called mode-I, mode-II and mode-III. Mode-I cracks
involve normal stresses at the crack tip ‘pushing’ the material outwards, perpendicular to the
direction of the crack, as the fracture grows. In mode-II cracks, shear stresses parallel to the
direction of the crack (but perpendicular to the crack front in three dimensions) dominate the
opening, so that material ‘slides’ out of the way. Finally, mode-III cracks involve a shear stress
acting parallel to the crack tip but along the plane of the crack front, tearing apart either side.
Since our study is two-dimensional, mode-III cracks cannot be seen. In this section, we apply our
freezing model to the growth of ice lenses, and seek to explain the observation that the form of
the cryoscution-driven stresses in the hydrogel are heavily dependent on mechanical boundary
conditions on the displacement field [1], with lens formation akin to a mode-II crack when the gel
is adhered to the walls, and akin to a mode-I crack when it is free to slide.

In classical fracture mechanics, the adhesion strength is important in setting both the shape of
a crack as it forms and the dynamics of its formation [31], and in our case the hydrogel must be
pulled away from the lower boundary for the ice lens to form. Experimentally, it is seen that the
shape of the ice lens that forms is largely independent of adhesion strength [1], with different
silane treatments on the glass surface showing qualitatively equivalent results. Furthermore,
once an ice lens has formed on the lower surface 0≤ x≤L, there is no growth of the crack
horizontally, and since the crack does not propagate, none of the dynamics of lens formation
from t= 0 onwards depend on the adhesion strength, unlike when a crack grows parallel to its
tip through a material that is fracturing. Therefore, in the present study, we neglect the effect
of adhesion strength on the formation of ice lenses, but remark that significant stresses near the
lens tip may lead to detachment of the gel from the boundary in front of x=L. This could affect
the stress and strain fields in the region of the lens tip, dependent on the adhesive strength, and
therefore the shape of the ice lens and nature of stresses in the gel near this point cannot be fully
determined without incorporation of adhesive effects. In this paper, we will therefore restrict our
attention to the shape of the lens away from the lens tip, and consider only stresses in the bulk of
the hydrogel.

Again making the large Lewis number limit of section 3, we assume that the temperature in
a(x, t)≤ z ≤ h is independent of z, equal to its value on the phase boundary z = a(x, t), and that
within the ice the temperature varies linearly with depth

T = Tm − 1

2
(Tm − Tc)

(
1 + cos

πx

L

)
+

[
TL(x, t)− Tm +

1

2
(Tm − Tc)

(
1 + cos

πx

L

)] z

a
, (4.2)

where TL(x, t) is the interfacial liquidus temperature on z = a(x, t), which is a function of the
local polymer fraction. The equations describing the gel dynamics are

∂ϕ

∂t
+ q · ∇ϕ+∇ ·

[
ϕk(ϕ)

µl
∇p

]
= 0 in a(x, t)≤ z ≤ h, (4.3a)

∇p+∇Π = 2∇ · [µs(ϕ)�] in a(x, t)≤ z ≤ h, (4.3b)
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with equation (4.3b) arising from Cauchy’s momentum equation combined with the constitutive
relation (2.3). Finally, the Stefan condition (2.9) for the interfacial evolution implies

ρLda

dt
=Kice

[
∂T

∂z
− ∂a

∂x

∂T

∂x

]
z=a(x, t)−

. (4.4)

Again we assume that the permeability and shear modulus are both constants, and that the
osmotic pressure is a linear function of ϕ, in the form of equation (3.12). Let Φ= ϕ/ϕ0, and use the
result that 2∇ · �=∇2ξ in two dimensions [26] to express equation (4.3a) as

∂Φ

∂t
+ Φ−1/2 ∂ξ

∂t
· ∇Φ+

k

µl
Φ∇2p= 0 so (4.5)

∂Φ

∂t
+ Φ−1/2 ∂ξ

∂t
· ∇Φ=

kΠ0

µl

(
Φ+MΦ1/2

)
∇2Φ, (4.6)

using the expression for q in equation (2.4) and rewriting ∇ · ξ with equation (2.2). The shear
parameter M= µs/Π0 represents the importance of shear stresses relative to osmotic pressures.

Seeking semi-analytical solutions to this problem, we restrict our attention to situations where
the thickness of the channel is much less than the lengthscale over which the temperature varies
(i.e. ε= h/L≪ 1). Scaling the terms in equation (4.6), where the two-dimensional displacement
vector field ξ has horizontal component ξ and vertical component η,

x∗ =
x

L
; z∗ =

z

h
; ξ∗ =

ξ

L
; η∗ =

η

L
; a∗ =

a(x, t)

h
; Φ=

ϕ

ϕ0
, (4.7)

it becomes clear that the leading-order contributions to fluid transport occur on the vertical
diffusive timescale µlh

2/kΠ0, and so equation (4.6) becomes

∂Φ

∂t∗
+ Φ−1/2 ∂ξ

∗

∂t∗
∂Φ

∂x∗
+ Φ−1/2 ∂η

∗

∂t∗
∂Φ

∂z∗
=
(
1 +MΦ−1/2

) ∂2Φ

∂z∗2
, (4.8)

at leading order in ε, with t∗ a dimensionless time scaled with the vertical diffusive timescale. All
further contributions to the diffusive term on the right-hand side occur at order ε2.

(a) Flow boundary conditions and ice growth
At the phase boundary, equation (4.4) prescribes the rate of ice growth, which non-
dimensionalises using the variables of the section above to give

da∗

dt∗
=

Le

S

1
2 (1 + cosπx∗)− C(Φ− 1)

a∗
, (4.9)

where S and C are the Stefan and undercooling numbers respectively, as defined above, and Le=

κ/D represents the ratio between thermal and compositional diffusivities, where D= kΠ0/µl.
There are also boundary conditions on the interstitial flow field, with no flow through the

upper boundary z∗ = 1 or the wall at x∗ = 0. Similarly, we expect ∂p∗/∂x∗ = 0 as x∗ →∞,
representing no flow far from the freezing front. Scaling pressures with Π0, equation (4.3b) implies
that

∂p∗

∂x∗
=− ∂Φ

∂x∗
+M

(
∂2ξ∗

∂x∗2
+ ε−2 ∂

2ξ∗

∂z∗2

)
and

∂p∗

∂z∗
=− ∂Φ

∂z∗
+M

(
ε2

∂2η∗

∂x∗2
+

∂2η∗

∂z∗2

)
, (4.10)

giving the boundary conditions

∂Φ

∂x∗
=M ∂2ξ∗

∂x∗2
on x∗ = 0, x∗ →∞ and

∂Φ

∂z∗
=M∂2η∗

∂z∗2
on z∗ = 1. (4.11)

In fact, symmetry arguments allow us to assume ∂Φ/∂x∗ = 0 on both x∗ = 0 and as x∗ →∞,
setting stronger conditions on the polymer fraction field. Finally, cryosuction sets a boundary
condition on ∂p∗/∂z∗ on the phase boundary, since the rate of water supplied to the ice must
match the rate of ice growth. Making the same assumptions of equal densities as before, with
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slenderness allowing us to assume that the normal fluid velocity at the ice–gel boundary is
vertical,

M∂2η∗

∂z∗2
− ∂Φ

∂z∗
=

da∗

dt∗
on z∗ = a∗(t∗). (4.12)

Provided that we can find expressions for the displacement field in terms of the polymer fraction
Φ, equation (4.8), the growth condition (4.9), and boundary conditions (4.11) and (4.12) describe
the formation of ice lenses fully.

(b) Displacement field
In order to balance vertical deviatoric stresses with horizontal bulk pressure gradients, pressure
must scale like ε−2, with P = ε2(p∗ + Φ− 1). Hence, the vertical component of Cauchy’s
momentum equation implies that ∂P/∂z∗ = 0 at leading order, so

ξ∗ =
1

2M
∂P
∂x∗

z∗
2
+A(x∗)z∗ +B(x∗). (4.13)

Hence,

η∗ = 2

∫1
z∗

Φ1/2 dz′ +
1

6M
∂2P
∂x∗2

(
1− z∗

3
)
+

1

2

∂A

∂x∗

(
1− z∗

2
)
+

(
∂B

∂x∗
− 2

)
(1− z∗), (4.14)

using equation (2.2) and the fact that η∗ = 0 on z∗ = 1. Since ξ∗ = 0 on x∗ = 0, it is clear that
A(0) =B(0) = ∂P/∂x∗ = 0 here. Recent experiments detailed in [1] compare the effect of two
boundary conditions at the point where the gel meets the top boundary of the container. To find
the form of A, B and ∂P/∂x∗, we must impose either free-slip or no-slip boundary conditions at
the walls and ice–gel boundary.

(i) No-slip boundary conditions

In the case where ξ∗ = 0 on both z∗ = 1 and z∗ = a∗(x∗), we expect a parabolic profile for the
horizontal displacement,

ξ∗NS =− 1

2M
∂P
∂x∗

(
1− z∗

) (
z∗ − a∗

)
, (4.15a)

with

η∗NS = 2

∫1
z∗

(
Φ1/2 − 1

)
dz′ − (1− z∗)2

12M

[
∂2P
∂x∗2

(
1 + 2z∗ − 3a∗

)
− 3

∂a∗

∂x∗
∂P
∂x∗

]
. (4.15b)

On z∗ = a∗(x∗), it is also apparent that the vertical displacement must be equal to a∗ – points
that start out on the lower boundary must remain on this lower boundary – resulting in a first-
order ordinary differential equation for ∂P/∂x∗ from setting z∗ = a∗ in equation (4.15b). Since
∂P/∂x∗ = 0 at x∗ = 0, this can be solved for the horizontal pressure gradient, fully specifying the
form of the displacement field. Specifically,

∂2P
∂x∗2

− 3

1− a∗
∂a∗

∂x∗
∂P
∂x∗

− 24M
(1− a∗)3

∫1
a∗

(
Φ

1
2 − 1

)
dz′ +

12Ma∗

(1− a∗)3
= 0. (4.16)

For the assumptions of LENS modelling to hold, we require the deviatoric strains to be small.
Using the definitions

�zz =
∂η∗

∂z∗
− 1 + Φ1/2 and �xz =

1

2

[
1

ε

∂ξ∗

∂z∗
+ ε

∂η∗

∂x∗

]
, (4.17)

these conditions reduce to requiring

1− Φ1/2 +
1− z∗

2M

[
(z∗ − a∗)

∂2P
∂x∗2

− ∂a∗

∂x∗
∂P
∂x∗

]
≪ 1 and

2z∗ − (1 + a∗)
2M

∂P
∂x∗

≪ 1. (4.18)

These conditions can both be satisfied in the limit M≫ 1 and C ≫ 1, where the gel is stiff and there
is limited drying (Φ≈ 1), since large C ensures that little drying must occur to lower the liquidus
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temperature to below the lower boundary cooled temperature. Notice that the requirement that
M≫ 1 implies that horizontal displacements ξ∗NS must be small in magnitude.

(ii) Free-slip boundary conditions

If we instead allow the gel to slip along the top boundary and phase boundary, but instead impose
the requirement that the shear strain �xz is zero on the boundaries, we require ∂ξ∗/∂z∗ = 0 on
both z∗ = a∗ and z∗ = 1 at leading order in the aspect ratio. This enforces ∂P/∂x∗ = 0, with little
flow in the horizontal direction, and shows that the gel deforms by stretching horizontally like a
block. In this case,

ξ∗FS =B(x∗) and η∗FS = 2

∫1
z∗

(
Φ1/2 − 1

)
dz′ +

∂B

∂x∗
(
1− z∗

)
. (4.19)

Again requiring η∗ = a∗ when z∗ = a∗ sets the value of the final parameter, B(x∗), such that

ξ∗FS =

∫x∗

0

[
a∗

1− a∗
− 2

1− a∗

∫1
a∗

(
Φ1/2 − 1

)
dz′

]
dx′, (4.20a)

η∗FS = 2

∫1
z∗

(
Φ1/2 − 1

)
dz′ +

1− z∗

1− a∗

[
a∗ − 2

∫1
a∗

(
Φ1/2 − 1

)
dz′

]
. (4.20b)

Notice that there is no dependence on the stiffness of the gel in the displacement field, since the
parameter M does not appear. This only affects the rate at which deswelling occurs, but since the
material is not anchored at its boundaries, the intrinsic stiffness is unimportant. Unlike in the no-
slip case, we are guaranteed that shear strains are small everywhere in this case, since ∂ξ∗/∂z∗ = 0

and the gel is stretched plug-like in the horizontal direction. For normal deviatoric strains to be
small, we require

1− Φ1/2 − a∗

1− a∗
+

2

1− a∗

∫1
a∗

(
Φ1/2 − 1

)
dz′ ≪ 1, (4.21)

which again can only be satisfied if Φ≈ 1 and a∗ is small, which occurs when C is large, a superset
of the parameter range where LENS theory is valid in the no-slip case. The absence of pinned
boundaries prevents large deviatoric strains from building as easily as in the case of no-slip
boundaries, resulting in weaker constraints on the gel for model validity, and allowing larger
horizontal displacements than in the no-slip case.

(c) Steady-state ice lens shapes
In steady state with x∗ < 1, the polymer fraction field must satisfy

∂2Φ

∂z∗2
= 0 so Φ= r1(x

∗) + r2(x
∗)(z∗ − a∗) with r1(x

∗) = 1 +
1 + cosπx∗

2C , (4.22)

from equations (4.8) and (4.9). Note also that r2(x∗) =M∂2η∗/∂z∗2, using the flow boundary
conditions, and so, since pervadic pressure gradients are not present in steady state, equation
(4.14) shows that r2 must be identically zero, since A and r1 are functions of x∗ alone. Hence, the
steady-state polymer fraction field is simply a function of horizontal position, with

Φ∞ = 1 +
1 + cosπx∗

2C . (4.23)

When no-slip boundary conditions are imposed,

η∞NS = 2(1− z)(Φ
1/2
∞ − 1), (4.24)

and so

a∗∞ =
2(Φ

1/2
∞ − 1)

1 + 2(Φ
1/2
∞ − 1)

≈ 1 + cosπx∗

C (4.25)
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Figure 6: Plots of the steady state ice lens profile with free-slip boundary conditions defined in
equation (4.27) for different values of C and M.

in the large-C limit of LENS validity. In the case of free-slip boundary conditions, equation (4.10)
shows that

M
∂2ξ∗FS
∂x∗2

=
∂Φ∞
∂x∗

, (4.26)

so, in the large-C regime,

a∗∞ =
2(Φ

1/2
∞ − 1) + (Φ∞ − 1)/M

1 + 2(Φ
1/2
∞ − 1) + (Φ∞ − 1)/M

, (4.27)

reducing to the same as in the no-slip case when M is large.
However, we can consider the freezing of significantly less stiff gels in the free-slip limit, as the

requirement that M≫ 1 need no longer be imposed. Figure 6 shows examples of the steady-state
ice lens thickness as the parameters C and M are varied. In general, notice that larger values of
C result in thinner ice lenses, since the gel must dry out to a lesser degree to lower the freezing
temperature by a fixed amount. Larger values of M produce thinner ice lenses as well, as the
deformation is resisted in the bulk of the gel by the formation of shear stresses.

(d) Transient ice growth
In order for growth to occur, water is driven from the bulk of the hydrogel into the ice layer
via cryosuction, and our freezing model allows for these interstitial flows to be quantified. Since
u=−(k/µl)∇p,

u=
kΠ0

µlh

(
ε

[
∂Φ

∂x∗
−M ∂2ξ∗

∂x∗2

]
,
∂Φ

∂z∗
−M∂2η∗

∂z∗2

)
, (4.28)

illustrating how flows are vertical to leading order in the aspect ratio (downwards towards the
growing ice layer) with an order-ε horizontal correction as flow is driven from more swollen to
drier regions of the hydrogel. Figure 7 illustrates how the polymer fraction evolves in time and
space as a result of the flow of interstitial fluid, with water drawn in from the bulk of the gel
towards x∗ = 0 and then downwards to the growing lens.

At very early times, the growth is approximately one-dimensional, with water drawn vertically
downwards from a fully-swollen hydrogel. Therefore, we can approximate equation (4.9) by

da∗

dt∗
=

Le

2S
1 + cosπx∗

a∗
so a∗ ≈

√
Le

S (1 + cosπx∗) t∗. (4.29)

As mentioned above, in the free-slip case, horizontal pressure gradients are small, and the bulk of
fluid flows remain vertically-oriented, so this approximation holds for longer when the gel is not
anchored at its edges.
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Figure 7: A contour plot of the polymer fraction field as the lower boundary of a gel with free-slip
boundary conditions is cooled, showing the interstitial fluid velocity (arrows) and the approach
to a steady-state ice lens (dotted curve). Here, M= 100, C = 2, Le/S = 10 and ε= 0.1. At early
times, ice is grown by drawing water vertically from the gel above it, whilst at later times water
is primarily drawn longitudinally.
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Figure 8: Plots of the horizontal displacement ξ∗ at x∗ = 0.5 for various times t∗ = 0 to t∗ = 0.025,
with ε= 0.1, M= 10, C = 0.1 and Le/S = 10. Time progresses from the lighter profiles to the
darker ones, showing how the gel is initially pulled towards x∗ = 0 (initial shrinkage) and then
pushed away.

(e) Deformation of the gel
The approach to steady state is largely similar whether no-slip or free-slip boundary conditions
are applied at the top surface, but the displacement field appears different in each case. Generally,
there are two phases of deswelling seen as the ice layer grows and pushes the hydrogel out
of place from the bottom left-hand corner. Initially, ice forms in a thin layer and dries out the
hydrogel in immediate contact with the ice lens, causing a contraction in the polymer matrix and
drawing polymer chains downwards and to the left as the scaffold shrinks. This is followed after
some time by a regime where the dominant displacements are upwards and to the right, as the
gel relaxes and is pushed out of the way.

It was shown in section 4(b) that our theory is only generally valid for both types of boundary
condition in the limit of large M (gels where elastic ‘stiffness’ dominates over osmotic pressures)
and large C (where there is a large depression in the liquidus temperature for a comparatively
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Figure 9: Plots of the displacement field at t∗ = 0.025, with arrows from reference position to
final position. The parameters ε= 0.1, M= 10, C = 0.1 and Le/S = 10 are chosen to accentuate
differences between the boundary conditions, even though they may result in solutions with large
deviatoric strains, oustide of the range of validity of LENS theory.

small deswelling of the gel). However, in the analysis that follows, we will use smaller values of
C and M to produce results that are indicative of the qualitative behaviour for more nonlinear
situations, even though such parameters may give rise to large deviatoric strains (as in figure 10)
inconsistent with a LENS approach.

In figure 8, the evolution from negative to positive horizontal displacement is illustrated,
showing also how displacements vary in the vertical direction. The initial shrinking behaviour
is clear by the negative displacements at early times, which then become positive as the gel is
forced rightwards by the growing ice.

Figure 9 shows the different displacement fields in this second phase of deswelling, with
arrows marking the displacement of gel elements from an initial location at the base to a final
position at the tip. Notice how the parabolic profile for ξ∗NS is apparent in the no-slip case, and
how the deformation appears more plug-like in the free-slip case where ξ∗FS is independent of z∗.

In general, the presence of the ice lens displaces the gel to the right and upwards, but when
free-slip conditions are applied, the horizontal displacement is seen to be independent of the z∗

direction at leading order. We now investigate whether our model’s predictions agree with the
observations of [1] that lens formation is akin to the formation of a mode-I crack (i.e. dominated
by stresses normal to the lens rupturing the gel by pushing it away) in the free-slip case, but akin
to that of a mode-II crack (dominated by shear stresses formed at the peeling tip) in the no-slip
case.

Our expressions for the displacement fields allow us to deduce leading-order approximations
to the normal deviatoric strain �zz and the shearing strain �xz . Recalling the scalings from our
lubrication assumption,

�zz =
∂η∗

∂z∗
− 1 + Φ1/2 and �xz =

1

2

[
1

ε

∂ξ∗

∂z∗
+ ε

∂η∗

∂x∗

]
. (4.30)

If free-slip boundary conditions are applied, ∂ξ∗/∂z∗ = 0, and �xz is an order-ε quantity.
Therefore, it is seen that normal strains (�zz) are much larger in this case, with

�zz = 1− Φ1/2 − a∗

1− a∗
+

2

1− a∗

∫1
a∗

(
Φ1/2 − 1

)
dz′ and �xz =O(ε). (4.31)

This shows that the formation of the ice lens affects the hydrogel in the same way that the opening
of a mode-I (normal-stress-dominated) crack in the gel would, with the dominant displacement
of material occuring normal to the forming ice lens. In the case of no-slip boundary conditions,
the shear strains are order 1/ε, compared with order-1 normal strains, and therefore the ice lens



19

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

�zz�zz
0

0.2

0.4

0.6

0.8

1

z
∗

Free-slip

−0.2

0

0.2

�zz�zz

No-slip

−0.2

0

0.2

�xz�xz

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x∗

z
∗

−0.004

−0.002

0

0.002

0.004

�xz�xz

0 0.5 1

x∗

−4

−2

0

2

4

Figure 10: The normal (�zz) and shear (�xz) strain fields plotted for the two different boundary
conditions at t∗ = 0.0225 with the same parameters as figure 9. The red arrows represent
displacements from equilibrium. Notice the different scales on the colour bars.

appears as a mode-II (shear-dominated) crack opening,

�zz = 1− Φ1/2 +
1− z∗

2M

[
(z∗ − a∗)

∂2P
∂x∗2

− ∂a∗

∂x∗
∂P
∂x∗

]
and

�xz =
1

ε

2z∗ − (1 + a∗)
2M

∂P
∂x∗

+O(ε). (4.32)

In order to remain within the confines of LENS theory, all deviatoric strain components must be
small, and therefore we are restricted to only modelling cases where a very thin ice layer (a∗ ≪ 1)
forms with relatively little drying of the remaining gel (Φ≈ 1). In this regime, �xz remains small
in spite of the ε−1 prefactor, yet is still an order of magnitude larger than the normal strains.

Figure 10 shows the strain fields in both cases, illustrating the different ways in which the
gel deforms as the ice lens forms. There is negative normal strain above the lens as the gel is
compressed away from the lower boundary, with this normal stress higher in regions where
more ice has grown. Above the ice lens, shearing strains are weakly negative in the free-slip case,
reflecting that ∂ξ∗/∂z∗ and ∂η∗/∂x∗ are both less than zero. However, the parabolic horizontal
displacement field leads to larger shear strains in the no-slip case, with both positive and negative
shear above the ice lens. Again, note that the examples illustrated in this figure are deliberately
chosen to give rise to large deviatoric strains for comparison purposes, even though solutions
with large deviatoric strains lie outside the range of validity of the LENS model.

To illustrate this point, figure 11 plots the ratio of �xz to �zz as the gel deforms with the same
material properties but different boundary conditions. It is clear that, in the free-slip case, the
principal axes are aligned with the walls, but in the no-slip case there is a significant rotational
component. In the free-slip case, normal strains are much greater than shear strains, and so we
expect normal stresses to be larger in the gel. There are some shear stresses near the tip, as the
crack opens wider (as would be expected), but everywhere the normal strains are at least an
order of magnitude greater than shear. In the no-slip case, it is apparent that shear strains are
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Figure 11: Plots of the ratio of shear to normal strain at t∗ = 0.02 when applying free-slip or no-slip
conditions on the top surface. The parameters are the same as in 9. Arrows indicate the principal
axes and magnitude of the deviatoric strain tensor, with the direction indicating the nature of the
strain (compressive or stretching). Notice the dominance of shear in the no-slip case.

larger than normal strains, since the horizontal displacement varies from a maximal value on the
ice–gel interface to zero on the top surface. There are some normal stresses further away from the
crack tip where the ice displaces the gel vertically upwards.

Our model does not, however, take into account the small amounts of expansion that occur
as water freezes into ice. As discussed in the one-dimensional case, this inhibits the growth of
an ice layer in a completely closed container, since expansion leads to arbitrarily high pressures
that depress the freezing temperature of the water. In the formation of an ice lens, however,
with a semi-infinite channel in the x direction, there could still be significant normal stresses
imposed on the gel as it is compressed by the growing lens. These stresses could then lower the
freezing temperature if they were to build up to a significant enough level such that the colligative
assumption of equation (2.8) would no longer hold, especially in the case of no slip, where the gel
would be displaced to the right as the ice grows but pinned in place on its top and bottom surface.

5. Conclusion
In this paper, we have applied our modelling of hydrogels to explain recent experimental
observations of the freezing of such gels and to provide a complete description of the process
of cryosuction, both by modelling the thermodynamic boundary conditions and the fluid flow
through the polymer matrix induced by these interfacial effects. Though it has long been known
that Gibbs-Thompson undercooling leads to the expulsion of water from a gel to form ice, and
also that this process results in an elastic deformation of the polymer scaffold as water is lost, a
coupled model of the hydrogel’s deformation and the growth of ice has not yet, to our knowledge,
been provided.

This process is driven by a boundary condition at the ice–gel phase boundary, which we
discuss initially in the context of a one-dimensional model. This condition sets the liquidus
temperature in terms of the osmotic pressure in the hydrogel, depressing the freezing point more
for higher pressures. Alternatively, the same condition can be viewed as providing a boundary
condition on the osmotic pressure given a temperature field, and it is this reverse view that is of
more use in understanding the behaviour of the gel as the ice forms.

Swelling and drying processes typically start from an interfacial stress condition coupled with
a condition on p that together set a value of Π at the edge of a gel. This cryosuction boundary
condition leads to the flow of water from more swollen regions of the hydrogel to the interface,
and drives the drying process as water is expelled into the ice. In finite-sized systems, a steady
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state is eventually reached where the uniform osmotic pressure in the hydrogel is able to balance
the undercooling effect in the Gibbs-Thompson relationship, and there is no further growth of ice.
We showed above how this provides an alternative method for discerning the osmotic modulus
of a gel sample without recourse to mechanical compression experiments, such as those outlined
in [14]. A further avenue of research would be to compare the results of gel-freezing osmometry
with mechanical compression experiments to check for agreement.

Then, we discussed the formation of ‘ice lenses’ at a cooled boundary with a temperature
gradient. Much as in the one-dimensional case, ice grows by the expulsion of water from the
hydrogel, with thicker ice at a cooler boundary, but the interfacial boundary condition now
depends on the horizontal position x. This leads to greater drying of the hydrogel in the colder
regions, and drives a flow parallel to the ice lens, replenishing the drier regions of the gel and
driving further ice growth. This process couples complicated flow dynamics and deformation in
the gel with a two-dimensional freezing problem, and so to model it analytically, we make the
assumption of a small aspect ratio.

Under the lubrication approximation that the ice lens is much longer than it is thick, we were
able to replicate many of the qualitative experimental observations made by [1]. Noticing that
shear stresses are present at the crack tip with normal stresses more important behind this region,
we are able to investigate the different effects of boundary conditions where the gel is fixed in
place or free to slip on the stress patterns that result. Specifically, we have shown that the gel
layer is deformed in a manner akin to a mode-II crack when the gel is bound to the top surface
and like a mode-I crack when free to slip. This helps explain the source of stresses in the freezing
hydrogel that result from cryosuction.
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